DEVELOPMENT OF AN RF CAVITY FOR AN ATMOSPHERIC SCANNING POSITRON MICROSCOPE

Noriyosu Hayashizaki^{A)}, Nagayasu Oshima^{B)}, Ryunosuke Kuroda^{B)}, Ryoichi Suzuki^{B)}

 ^{A)} Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
^{B)} National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

Abstract

An atmospheric scanning positron microscope has been developed for obtaining a positron annihilation imaging of a sample mounted in the atmosphere. Then, positron microbeam has to be accelerated up to 50-100 keV to extract it from the vacuum chamber to the atmosphere through a thin film. Therefore, we have developed an RF acceleration cavity and the single-gap type was fabricated as the first phase.

大気陽電子顕微鏡用高周波加速空洞の開発

1. はじめに

産業技術総合研究所(産総研)と東京工業大学原 子炉工学研究所(東工大)は、大気陽電子顕微鏡の 共同開発を進めている。陽電子は物質中で電子と出 会うと、γ線を放出して消滅する性質をもつ。その 消滅時の陽電子寿命やγ線エネルギーのドップラー 拡がりは、極微欠陥のサイズ(原子~nm サイズ) や濃度(10⁻⁵~10⁻⁷)に依存し、この原理を利用した 陽電子消滅分光は、試料中の極微欠陥等を非破壊的 に評価する最も有効な手法である[1]。

産総研では、電子線形加速器を利用して発生した 高強度低速陽電子ビームをマイクロビーム化するこ とにより、真空中に設置した試料に対して高い位置 分解能で陽電子消滅分光を行う手法を開発した[2-7]。 この測定装置は、陽電子プローブマイクロアナライ ザー、あるいは陽電子顕微鏡と呼ばれる。しかし、 現時点では真空中への試料設置が必須となっており、 測定可能な試料が限られてしまうことから、我々は 陽電子マイクロビームを大気に取り出して、陽電子

図1 産総研の高強度低速陽電子ビーム実験施設

寿命や消滅ガンマ線ドップラー拡がりを計測する装置(大気陽電子顕微鏡)の開発に取り組んでいる。 これが実現すると,真空環境への設置が容易でない 試料(液相や粉末,あるいは応力・熱などの外部負 荷を与えられた試料等)に対しても,陽電子消滅分 光による極微欠陥イメージング評価が可能になる。

大気陽電子顕微鏡システムの構成

大気陽電子顕微鏡システムは図2に示すように, ①陽電子マイクロビーム源,②ビーム加速部,③ ビーム取り出し真空窓,④試料走査部から構成され る。そして今回は,①および②の内容について以下 に述べる。

図2 大気陽電子顕微鏡の構成と要素技術

①陽電子マイクロビーム源

これまでの研究成果として、電子線形加速器を用いて発生した低速陽電子ビーム(ビーム径 10 mm) は、減速材を通過して輝度が増強され、末端の試料 測定部では 0.03~0.1 mm のビーム径が得られてい る。本装置でも同システムを利用する予定である。

②陽電子ビーム加速部

陽電子ビームを大気中に取り出すとき,真空窓に 対して高い透過率を得るためには,ビームの加速エ ネルギーが大きいほうが望ましい。そして,幾つか の真空窓材料の阻止能を検討した結果,加速エネル ギーは 50~100 keV 程度で実用上十分であるとの結 論に至った。

加速方式としては,静電タイプと高周波タイプが 考えられる。高周波タイプの場合は,陽電子消滅分 光の測定時間を短くするために,CW 運転が理想と なる。また,静電タイプの場合には,産総研の既存 システムでは、試料測定部に高電圧を印加する必要 があるが,絶縁上の問題から十部な加速が得られな い可能性がある。

本研究では、これらの点を総合的に考えて、試料 設置部に制約条件のない、CW 運転が可能な小型高 周波加速空洞を開発することにした。

3. 高周波加速空洞の開発

3.1 設計コンセプト

陽電子大気顕微鏡用高周波加速空洞の開発は,利 用可能なリソースの関係から,段階的に進めること にした。すなわち,CW 運転が可能な小型高周波加 速空洞を最終目標とするが,まずは製作が簡単な常 伝導キャビティを初号機として製作し,高周波増幅 器(既存のパルス型クライストロン)と組み合わせ ることで原理実証試験をおこない,必要技術の蓄積 をおこなう。

今回開発する常伝導キャビティは低コスト・簡便 性を重視して,以前に東工大で開発実績のあるシン グルキャビティと同じタイプにすることにした。た だし,その採用にあたっては,次の条件に留意して おかなければならない。

①高周波電力の供給はN型同軸ケーブル利用
②オリジナルタイプでは冷却構造が空冷になる
③Oリングとボルトによる組み立て
④各部での発熱を考慮したパルス運転になる

なお,計算誤差や加工誤差などの影響や,実験時の 温度環境などによって共振周波数は変化する。そこ で前者に関しては,キャビティ内面を切削加工する ことで共振周波数の調整をおこない,必要があれば 銅ロッドを用いたチューナーにより補正することに した。そして後者については,実験室の基準温度を 27 ℃と仮定して,可能な範囲でクライストロンの 運転周波数の調整(2856 ± 3.5 MHz)により制御す るものとした。 3.2 全体設計

全体寸法は東工大シングルキャビティに準拠し, 直径 160 mm, 全長 140 mm 程度とした。構造的に は,前述のようにキャビティ中央部における分割構 造となり,組み立ては O リングとボルト締結によ りおこなう。RF コンタクトにはインジウムワイヤ を用いる。また,高周波カプラーやチューナーを取 り付けるためのポートをハーフセル毎に 2 ヶ所ずつ, 合計 4 ヶ所設けている。真空排気はビームポートを 通じておこなう。

材料および加工方法については"無酸素銅製の本体にステンレス製ポート部品のロウ付"を採用した。 そして,既存装置との取り合いの関係から,フランジ類は全てコンフラットタイプとした。

図3陽電子大気顕微鏡用加速空洞初号機の形状

3.3 高周波設計

今回の高周波加速空洞では TM010 モードによっ て励振される高周波電場をビーム加速に使用する。 その共振周波数は空洞寸法によって変化するため, 電磁場解析ソフトウェア SUPERFISH (2 次元) お よび MW-Studio (3 次元) によって設計をおこなっ た。当然ながら,前者のほうが計算メッシュサイズ を細かくできるので精度がよい。このため基本設計 に SUPERFISH を使用し,ポートの影響などは MW-Studio で評価した。

加速空洞の長さや各部のカーブ半径の高周波特性 に対する影響について評価した結果,空洞直径が 64~66 mm 付近で Q 値が 8600 と比較的大きくとれ ることがわかった。しかし,ビームポートフランジ との取り合いから,高周波ポートの中心位置を一定 以上小さくできず,そのままの空洞直径では採用す ることが難しいことがわかり,これを解決するため に Q 値は当初案よりも小さくなってしまうものの, 最終的な空洞直径は 76 mm にした。また,高周波 ポートの影響は MW-Studio により-11 MHz 程度と予 想した。

前述したように各種の要因によって,加速空洞に

は周波数調整が必要となる。しかし、その完成後に 我々が選択できる調整手段は少なく、チューナーを 使用するか、形状の追加工をおこなう程度である。 加速空洞への高周波ポートへの銅ロッド挿入による 周波数チューニングは Q 値を減少させるため、念 のため準備はしておくものの使用しないことを基本 とした。また、使用する場合においても、これは共 振周波数を上昇させる方向に作用するため、加速空 洞完成時の共振周波数が運転周波数よりも低いこと が条件となる。

したがって現実的には、加速空洞形状の追加工に よる調整が最も効果的な方法となるが、共振周波数 への影響の大きさや空洞性能保持の観点から、加工 可能な領域は限定されてしまう。過去の例などを参 考に、今回のキャビティでは空洞の赤道部付近を切 削することを考え、設計段階から周波数調整のため の突起部を設けておくことにした。その切削は共振 周波数を低下する方向に作用するため、設計時にお いては共振周波数を 2856 MHz よりも高く設定して おいた。

3.4 製作と高周波特性測定

高周波加速空洞の基本加工後,ネットワークアナ ライザを用いて共振周波数とQ値を測定した。加 速空洞の所定位置にOリングとインジウムワイヤ を配置し、トルクレンチを使用して5N/mの強さで ボルト締めをおこなった。また、測定時の温度環境 は、なるべく実験室と同じになるように25~27°C 程度とした。

そして、加速空洞の初期状態を確認するために、 高周波カプラーの結合度を小さくして、なるべく周 波数に影響がない状態で、透過法により共振周波数 を測定した。その結果、予定通りに共振周波数は運 転周波数よりも若干高めの 2860.65 MHz(大気), Q値は 4900(計算値の 87.5 %)が得られた。また、 加速空洞内部を真空状態にして共振周波数を測定し たところ、大気状態に比べて約 0.8 MHz 高くなるこ とが確認された。

図4 大気陽電子顕微鏡用加速空洞初号機

その後,前述の調整用突起部を切削することで共振周波数を微調整し,結果的に 2回の調整削りによって 2855.39 MHz (大気)の状態が得られ,真空状態において所定の周波数になった。

3.5 現在の状況

完成した高周波加速空洞は、大電力予備試験とし て半導体アンプによってパルス高周波電力(10 Hz, 4 μs)を最大 240 W まで投入し、問題なく動作する ことを確認した。また、最終的な陽電子ビーム加速 試験は、並行して開発が進められている他の要素技 術とあわせておこなう必要があるため、現在は電子 ビームによる加速空洞単独での性能試験を計画し、 電子銃やクライストロンなど実験システムの準備を 進めている。

4. まとめ

大気陽電子顕微鏡装置の実現に向けて,産総研と 東工大は共同で要素技術の開発をおこなっている。 そのひとつである陽電子ビーム加速用高周波加速空 洞については,これまでに初号機の製作を完了し, 現在は性能試験に向けて準備を進めている。なお, 本装置の高周波加速空洞の製作にあたり,タイム(㈱ の皆さまには大変お世話になりました。

参考文献

- [1] 陽電子計測の科学,日本アイソトープ協会,丸善 (1993).
- [2] R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki and T. Tomimasu, Jpn. J. Appl. Phys., Part 2 30, L532 (1991).
- [3] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, J. Appl. Phys. 103, 094916, (2008).
- [4] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Mater. Sci. Forum, 607, 238 (2009).
- [5] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Appl. Phys. Lett. 94, 194104, (2009).
- [6] 産総研プレスリリース「陽電子を用いた実用的な3次 元極微欠陥分布イメージング法の開発」2008年8月
- [7] N. Oshima, R. Kuroda, C. He, A. Kinomura, T. Ohdaira, H. Toyokawa, R. Suzuki, N. Hayashizaki and T. Hattori, Phys. Stat. Sol.(c)4, 4023 (2007).