Electromagnetic heat design of S-band Linac

Kohta Kambe^{1,A)}, Kunihiro Miyoshi^{A)}, Akira Sakumi^{A)}, Toru Ueda^{A)}, Mitsuru Uesaka^{A)}

^{A)}Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo

22-2 Shirane-shirakata, Tokai, Naka, Ibaraki, 319-1188

Abstract

At The University of Tokyo, We have been planning to introduce Na₂Kb cathode which can be driven by visible light and have high QE. But there have been several problems since cartridge-type cathode exchange system. We think these problems are to do with RF Electromagnetic heat. In this conference, we will report the relations of these problems with Electromagnetic heat and future plans of a Na₂Kb and RFGUN at The University of Tokyo.

S-band Linac の電磁熱設計

1. はじめに

フォトカソードRF電子銃は、低エミッタンスかつ 短バンチ電子ビームの生成が可能な電子源として、 リニアコライダーや次世代放射光源であるX線FELへ の応用が期待されており、またポンプ&プローブ実 験に有用である。

東京大学原子力専攻のライナック施設に設置され ているS-bandの18MeV Linac (18L)では、サブピコ 秒

からフェムト秒時間領域の現象、特に放射線誘起反応初期過程の解明を目的としたポンプ&プローブ方式の高時間分解能パルスラジオリシスシステムが構築されており、フォトカソードRF電子銃が使用されている^{[1],[2]}。

フォトカソードRF電子銃を用いたパルスラジオリ シス用の18Lの体系図を図1に示す。18Lは主に、 フォトカソードRF電子銃(1.6 cell BNL-GUN -IV) 加速管、Qマグネット、シケイン型磁気パルス圧縮 器からなる。また、フォトカソード励起用レーザー 及びプローブ用レーザーの光源は、0.3TWの Ti:Sapphireフェムト秒レーザーを使用しており、 途中スプリッターで2つに分けている。パルスラジ オリシス実験では、超短パルス電子ビーム、高精度 同期システム、大電荷量ビームの3つが高時間分解 能のために要求される。現在、それぞれの課題につ いて研究が行われている^[3]

東京大学では高い量子効率を持ち、400nm(Ti:Sa レーザーの2倍高調波は)の可視光で駆動するNa₂KSb カソードの導入を計画している。

しかし、東京大学18Lでは、酸素、水分に対する 反応性が高い半導体カソードを使用するためのカー ドリッチ型カソード交換システムの導入以降、さま ざまな問題生じている。

本研究では、18Lにおいて、現在生じている様々 な問題と、その原因、今後の展望について報告する。

図1. 18Lパルスラジオリシス体系図

2. カートリッチ型カソード交換システム

Cs-Te, Na₂KSbなどの半導体カソードは高い量子 効率をもつため、レーザーに負担をかけず、安定的 に大電荷ビームが得られる。しかし、酸素、水分に 対する反応性が高いため、カソード生成時から電子 銃へのインストール時まで一貫して超高真空に保つ 必要がある。18Lに導入されているカートリッチ型 カソード交換システム(SPring-8、浜松ホトニクス、 東大)は、工場で生産されたカートリッジ管内にカ ソードが真空封じされているため、製膜装置なしで 高QEカソードの使用が可能であり、コンパクトであ る。図2にカートリッチ型カソード交換システムの 概略図を示す。

このシステムは、カソード交換可能なRF電子銃端 板、カソード交換装置、及びカートリッジ管から成 る。Spring-8との違いはカートリッジ管を保管して おくリボルバーがない点である。カソード交換可能 なRF電子銃端板とは、通常の端板にプラグ挿入用の 孔を開けたものである。

このシステムの機構上の問題で、以前のMgカソー ド用端板の後ろについていた冷却管が取り除かれて いる。それぞれの端板の写真を図3に示す。

¹ E-mail: <u>kasokuki@tree.odn.ne.jp</u>

図2 カートリッジ式カソード交換システム概略図

図3Mgカソード端板,カードリッチ型システム用端板

3. 東大18Lの問題点

3.1 反射波形の乱れ

東京大学18Lは、高周波を2μs、10pps印加で運転 している。図4に高周波の出力に違いによる反射波 形を示す。

図4 反射波形

高周波の出力を上げると反射波形の高さが半分に なっている。そのため、電場が規定どおりたってい ないことが予測される。

高周波の入射波形、反射波とQ値の関係は以下の 式で表す。^[4]

$$E_{e} = \begin{cases} \alpha \left[1 - e^{\frac{\pi(1+\beta)f_{i}}{Q_{0}}} \right] & (0 < t < t_{1}) \\ \alpha \left[e^{\frac{\pi(1+\beta)f_{i}}{Q_{0}}} - 1 \right] e^{-\frac{\pi(1+\beta)f_{i}}{Q_{0}}} & (t > t_{1}) \end{cases} \beta = \begin{cases} \underline{Q[\underline{C}; \overline{\alpha}]} \\ Q[\bar{B}; \underline{\alpha}] \end{cases}$$
(1)

$$P = \begin{cases} -(E_0 - 1)^2 & (0 < t < t_1) \\ -E_0^2 & (t > t_1) \end{cases}$$
(2)

反射波形は導波管のQ値と、空洞のQ値の比βに依存する。端板部の冷却管を取り除いたことで生じる 高周波の電磁熱によって、RF電子銃のQ値が変化し てしまったことが原因と考えられる。

3.2 電子の透過率

18Lの加速管の前後にFaraday cupが設置されてお り、電子ビームの電荷量を測定できる。表1に各 Faraday cupの電荷量を示す。

カソードの種類にかかわらず、加速管前後の透過 率は悪い。原因は3.1で述べたように、熱膨張に よって電場強度が減少し、ビームエミッタンスが悪 くなったことが原因だと考えられる。

	FC-1	FC-2	透過率
Cs-Te	6nc	4nc	66.6%
Na ₂ KSb	2.2nc	1.7nc	77.2%

表1 電荷量とビーム透過率

4. 熱解析

RF電子銃の熱解析には、有限要素法解析ソフト ANSYSを使用した。ANSYSは構造解析、伝熱解析、流 体解析などの豊富な解析機能を持ち、また複数場 (構造/熱/流体…)に対する連成解析機能を持つ。

熱解析を行うにあたって、まずSuperfishで求め た電場分布から、電磁熱を計算しRF電子銃の壁面に 熱流束を印加した。以下の境界条件で計算した。

- ① 初期温度 298[K]
- ② 冷却水温度 298[K]
- ③ 冷却水流速 1L/s
- ④ カードリッチシステムと端板の接合部のビー ム方向の変形を0
- ⑤ 端板とRF電子銃空洞の接合部のビーム方向の 変形を0
- ⑥ 定常解析

図6,7にRF電子銃温度分布および、熱膨張分布 を示す。計算された熱膨張を再びsuperfishに入 れて計算すると、共振周波数は92kHzずれている ことが分かった。Superfishで計算された、18LRF 電子銃のQ値は13667.2である。高周波電力が共振 周波数に対して正規分布に従うとすると、電場強 度は規定の約7割になる。

図6 RF電子銃の温度分布

図7 RF電子銃の熱膨張分布

5. 新端板の製作、取り付け

熱問題を解決するため、冷却管をつけた新しい端 板を製作した端板の冷却効果を高めるために銅の割 合を多くなるように設計した。そのため、冷却管を カートリッチ型カソード交換システムの機構のうち、 カソードの真空を破る烏口の位置変更した。図8、 に記す。

現在カードリッジ型カソード交換システムの取り 付けは終了し、ベーキング中である。

また新端板でも熱解析を行った。図9,10に温度分 布、熱膨張分布を示す。

図8 新、旧端板図面 共振周波数のずれは20kHzに抑えられ、電場も規定 の95%になる。

図9 新端板温度分布

図10 新端板熱膨張分布

6. まとめ、今後の予定

熱膨張によって電場強度が規定よりどの程度弱く なっているか予想できた。今後このデータを元に粒 子の経路をシミュレーションし、10月の実験と照ら し合わせる。また、今回の計算ではQ値の変化によ る反射波の異常が再現できなかった。過渡解析に計 算を代えることで再現を試みる。

今後の予定は、端版熱設計改良を実証して、共振 を安定化し、 Na2KSbの可視光試験を円滑に実施で きる状況を今年度に構築する

参考文献

- [1]T.Kobayashi et al, Journal of NUCLEAR SCIENCE and TECHNOLOGY"vol.39,No.1,p.6-14, 2002
- [2] M. Uesaka et al., Radi. Phys. Chem, 60 (2001).
- [3] A. Sakumi, et al., Proc. 2005 PAC 3079-3081
- [4]谷口義洋,修士論文,東京大学(2009)