Performance of X-band high power source at KEK

Shuji Matsumoto, Mitsuo Akemoto, Shigeki Fukuda, Toshiyasu Higo, Sergey Kazakov, Noboru Kudoh, Hideki Matsushita, Hiromitsu Nakajima, Tetsuo Shidara, Kazue Yokoyama, Mitsuhiro Yoshida Accelerator Laboratory, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

Nextef and KT-1 are the two independent test facilities dedicated for X-band (11.424GHz) RF research at KEK. Nextef Modulator drives the twin PPM-focused high power klystrons to produce 100MW maximum and 75MW is available for the accelerator structure test, while KT-1 is powered by a single klystron to conduct fundamental RF high field studies. KT-1 started its operation in 2006 and Nextef has been operating since 2007. We review the recent performance of these high power stations and future plans.

KEK XバンドRF試験施設について

1. はじめに

KEKB 入射器棟内には二つの独立したXバンド (11.424GHz) RFステーションが設置され、現在定 常的に稼働中である。一つは、クライストロン試験 ステーションKT-1 (Klystron Station #1の略)で 2006年から、もう一つは、Xバンド高電界加速管の 試験施設Nextef (New X-band test facilityの略) で2007年から稼働している。両施設とも、常伝導リ ニアコライダー向けXバンド加速器開発プログラム が2004年に終了したのをうけて、そこで開発された 機器を使ってあらたに入射器棟内に再構築したもの である。

一般的に、高い周波数を用いる加速器では加速勾 配を引き上げられることから、将来の加速器開発の 一環として、両施設を拠点として、数年前より高加 速勾配Xバンド加速器開発につなげようとする意図 で研究を開始した。Nextefは、2008年に施設のコ ミッショニングののち、現在は、100MV/mの加速勾 配を持つ高電界加速管の試験に使用している[1]。 一方のKT-1は、2008年以降、狭導波管を使った高電 界RF放電の基礎的実験を継続的に行っている[2]。

Nextefは、50MW出力PPM収束クライストロン2台の 出力を合成し、シールドルーム(名称シールドA) まで低損失円形導波管で搬送し、シールド内で加速 管の高電力試験を行うことができる施設である。最 大出力は100MWである。なお加速管への最大供給可 能パワーは、途中の搬送損失があり75MWである。 KT-1は、Xバンドクライストロン試験施設であるが、 そのパワーを利用した実験や各種コンポーネントの 試験も行なえる。図1は現在の入射器棟内のXバンド 関連機器の配置状況を示す。Xバンド施設は、入射 器棟内の加速管組み立てホール内にNextef、隣接す るクライストロン組み立てホール内にKT-1が展開さ れている。

2008年度末に、現存シールドAに隣接してシール ドBが新設された。このシールドは、superKEKB向け Cバンド加速管試験用として設置された。シールドB へは、となりのクライストロン組み立てホールの KT-2ステーションから、低損失円形導波管を通じて Cバンド(5712MHz) RFが供給されるようになってい る。今後、シールドBへは、Xバンド導波管を新たに 張り、Nextefクライストロンからパワーを供給する 予定である(Cバンドとの共用化)。シールドAは当 面Xバンド加速管試験用として使用する。

図1:入射器棟内のXバンド施設の配置平面図。

表1: KEK Xバンド施設の概要

	Nextef	KT-1
peak power	100MW	50MW
	(加速管入力75MW)	
pulse width	400ns	
Rep rate	50pps	
運転日程	KEKB入射器スケジュールに準ずる。24時	
	間運転可能。	
用途	シールドAにパワー	クライストロン
	供給。加速管試験専	試験とその出力
	用。	を使った実験な
		。

図2:T18_vg2.4_Disk#2 加速管試験時の加速管RF入力履歴。55MW入力で100MV/m加速勾配になる。

2. 運転状況

2.1 Nextef

KEK、CERN、SLAC三者よりなる高電界加速管開発 国際共同研研究プログラム[3]の試験拠点の一つと して、2008年以降、Nextefでは、共同開発した 100MV/m級の試験用加速管の高電力試験を行ってい る。2008年10月から2009年6月まで加速管 T18_vg2.4_Disk#2の試験を行い、試験終了後加速管 をTD18_vg2.4_Quad#3に入れ替え、現在はこの加速 管の試験を開始したところである。

これら18セルよりなる加速管を100MV/mの加速勾 配にするのに必要な加速管入力は、55MWである。 Disk#2加速管の試験中における加速管入力履歴を図 2に与える。年末年始や年度末などの停止期間を除 いて、ほぼ9カ月にわたる連続運転を行った。試験 開始後半月程度の加速管コンデショニングを経て以 降、さまざまな加速勾配時での加速管内放電頻度の 計測を行ったほか暗電流の測定も行った。

この運転の経験から、クライストロン合成出力が 90MWを超えると、システムとしてのフォールトが増 えてくることが分かってきた。一番の問題は、クラ イストロン電子銃での放電で、二本あるクライスト ロンのうちの特定の一本が、カソード電圧460KVを 超えると急に放電の頻度が増す。今回の加速管試験 時の、システム最大定格の100MW 出力(加速管入力 75MW、加速勾配117MV/m)運転時、そのクライスト ロン電子銃放電発生率は、100MW出力運転時間67Hr に対し23回発生、平均で約3時間弱に一回の頻度と なった。放電頻度が目立ってくる90MW出力のときの 加速管入力は65MW、加速勾配は加速管定格を超える 109MV/mであるので、それ以下の加速勾配での加速 管試験には、関係ない。もっぱら試験は100MV/m付 近で行われるので、実際上の障害はないが、要注意 事項である。

2.2 KT-1

KT-1では、運用開始後クライストロン試験を行っていたが、クライストロン試験の空き時間を利用し

て、試験済みクライストロンをそのまま稼働させ、 そのRFパワーを利用した実験に使用している。2007 年以来、狭導波管を使った高電界RF下での放電の基 礎実験を行っている[2]。KT-1ステーションの定格 は50MW、400ns、50ppsである。この範囲までのRFで、 各種RFコンポーネントの試験をここで行うことがで きる。

3. 今後の展開

3.1 パルス圧縮装置

Nextefでは、パルス圧縮を行うことでピーク出力 を増強する計画を進めている。現在のNextef最大出 力100MWを150MWまで引き上げる予定である。これに より、出力性能に余裕がでて、加速管の高電界特性 をより詳しく調べられるほか、今後三者共同研究の 中で、24セル加速管の試験をおこなう際にも十分な パワーが確保される。

図3: Nextefパルス圧縮。22mディレーラインの伝送 モードを変換と逆変換することで、ディレーライン の長さを実効的に二倍にできる。

圧縮の方式は、Single Delay Lineタイプの円形 TE11とTE21モードを使用する。図3 参照。クライス トロン合成RFをTE11モードコンバーターを通じて ディレーライン(円形導波管)に送り込む。端部で モード変換TE11->TE12とまたその逆変換をおこない、 ディレーラインを二往復することで実効的にディ レーラインを二倍の長さにしている。圧縮比は3.3。 クライストロンからの1.5μs幅、計60MWのパワーを ピーク150MW、幅300nsに圧縮する。Cバンド搬送ラ インとして既に建設されている導波管をこの圧縮シ ステムではDelay Lineとして使用(共用)する。

すでにコンポーネントの設計は終わり、運転との 日程調整を行いながら建設を進め、来年の夏に稼働 させる予定である。

3.2 シールドB共用化

シールドBは今後Xバンドの導波管を設置すること で、Xバンドでの試験も行えるようにする。パルス 圧縮の建設とあわせて導波管設置工事を行い、2010 年夏ごろよりXバンドパワーの供給を行いたい。今 のところ、RFソースはNextefクライストロンからを 考えており、二台のクライストロン間のRF相対位相 を変えることで、合成パワーの行先をパルス圧縮後 シールドAまたはシールドBの切り替えをおこなう予 定。三者共同研究とは別の高電界加速管試験をここ でおこなう予定である。

Current Configuration Planned Configuration

図4:Xバンド施設の増強案。左図が現在の配置状況。NextefクライストロンからシールドAにXバンドパワーが(緑線)、シールドBにはCバンドパワーがそれぞれ供給されている(青線)。右図が増強後の状況。図中、赤線部分が新規改造部分。1) Cバンド導波管をXバンドパルス圧縮のラインに転用する。NextefクライストロンからのRFをヘッダーを通じてディレーラインに送りこみ、パルス圧縮されたパワーはシールドAへ送る。2)Xバンド導波管の付け替え(現行シールドA行きをBへ)。Nextef クライストロン合成部でパワーの行き先を切り替える。

3.3 パワーソース

われわれの施設では、PPMクライストロンを使用 している。このクライストロンの設計仕様は75MWだ が、実用上は、パルス幅200nsで60MW、400nsでは 50MW、800ns以上の長いパルスではおおむね30MWの 出力で運転できる。当面、現行のPPMクライストロ ンを使用予定であるが、長いパルス幅で稼働できる パワー源として、ソレノイドクライストロンXB72K の再使用も考えている。この球は、400ns、35MW、 50ppsで長期運転実績があり、また球単独の長パル ス出力試験では、1.5µs幅、50MW、10ppsでの実績 があり、パルス圧縮へ応用するとさらなるピークパ ワー増強が見込める。

Xバンド100Mv/m級線形加速器は、加速器1メー ターあたりおおむね100MW程度のRFパワーを必要と する。現存のクライストロンでもパワーを合成、圧 縮することで、この要求を満たすことはできるが、 よりよいパワーソースの開発は、今後の高電界加速 器開発にとっては不可欠の課題となる。

4. まとめ

Nextefは2008年来加速管試験を、KT-1は2007年来、 狭導波管試験をそれぞれ行っている。両施設とも順 調に定常的稼働をしている。2010年度Nextefは、パ ルス圧縮とシールドB共用化によって増強予定であ る。

図5:2009年7月の入射器棟加速管組み立て室の状況。シールドAの奥にシールドB。BではCバンド加速管試験中。パワーを供給するCバンド円形導波管が見える。シールドAは加速管入れ替え作業中。

参考文献

- [1] 肥後ほか "Study of 100MVm on X-band Accelerator Structure",本プロシーディングス。
- [2] K.Yokoyama, et al., "High-Gradient RF Breakdown Studies with Narrow Waveguide", TU5PFP028, Proc. of PAC09, May 2009, Vancouver, B. C., Canada.
- [3] 肥後ほか "Status and perspective of X-band acceleration research at KEK", 本プロシーディングス。; 三者共同研究協力会議のホームページ http://indico.cern.ch/conferenceDisplay.py?confId=3 0911