FREQUENCY CHANGE OF AN ACCELERATING MODE OF THE ILC/STF SUPERCONDUCTING CAVITIES

Toshio Shishido¹, Eiji Kako , Shuichi Noguchi , Hitoshi Hayano , Yasuchika Yamamoto , Ken Watanabe KEK, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

Abstract

An operating frequency in the 9-cell cavities developed for ILC/STF is 1300 MHz. The tension equivalent to 600 kHz is loaded to the cavity at 2K, therefore resonance frequency of a cavity should be adjusted 1299.4MHz with no load. Various surface treatments, temperature change from 300K to 2K, pressure change from atmospheric pressure to vacuum are the factors of a cavity resonance frequency change. Pre-tuning at room temperature is performed so as to match a resonant frequency of a cavity with 1299.4 MHz at 2K and also to adjust the electric field strength in each cell equally. Acceleration mode frequencies and adjustment results of the electric field flatness on MHI-05,06,07,08,09 cavities newly produced for ILC/STF are reported in this paper.

ILC/STF用超伝導空洞の加速モード周波数変化

1. はじめに

ILC/STF用として開発されている9セル空洞の運転 周波数は1300MHzである。運転時には600kHzに相 当する負荷をかけるので、2Kでの周波数として負 荷なしの状態で1299.4MHzに調整する必要がある。 空洞の周波数変化の要因としては研磨処理、300K から2Kへの熱収縮、大気圧から真空への圧力変化 が上げられる。各工程での周波数変化量を把握して、 運転開始時の空洞共振周波数を1299.4MHzにすると 共に、加速電場の平坦度を整えるのがプリチューニ ングである。新たに製造されたILC/STF用空洞MHI-05,06,07,08,09号機について、各処理工程後の加速 モード周波数と電場平坦度の変化及びプリチューニ ングの結果について報告する。

2. 空洞処理工程

2.1 表面処理

ILC/STF 用空洞 MHI-05,06,07,08,09 号機製作後に 行われる表面処理工程は次の通りである。電解研磨 EP-I 100µm (超純水高圧洗浄等を含む) \rightarrow アニール処 理 (750°C, 3 時間) \rightarrow プリチューニング→仕上げ電解 研磨 EP-II 20 or 50µm (超純水高圧洗浄 8MPa,8 時間, C₂H₅OH or H₂O₂ リンス 60 分を含む)を経て空洞単 体性能試験である縦測定へ向う。電解研磨と高圧水 洗処理は現在、STF (Superconducting Test Facility)棟 内に建設された表面処理設備で行っている^[1]。

01~04 号機までは赤道部電子ビーム溶接 (EBW) 部の欠陥除去が主目的である遠心バレル研磨を行っ ていたが、溶接条件の技術向上により滑らかな溶接 面が得られる様になったため、05 号機以降は省略 した。C₂H₅OH もしくは H₂O₂ リンスは電界放出電 子やマルチパクタリングなどの抑制を期待して加え られた処理であるが、その効果については現在試験 中である。

図1: ILC/STF 超伝導空洞用電解研磨装置

2.2 プリチューニング

超伝導空洞では空洞の共振周波数を加速器の運転 周波数に一致させ、かつビームを効率よく加速する ために各セルの電場の強さを一様に揃える必要があ る。このために行われるのがプリチューニングであ る^[2]。プリチューニングは仕上げ電解研磨 EP-II の 前に行われるため、この研磨量に因る周波数変化量 を把握しておくのは、目的とする空洞共振周波数を 得るために重要である。

¹ E-mail: shishido@post.kek.jp

図2: ILC/STF 超伝導空洞用プリチューニング装置

2.3 縦測定、横測定

プリチューニングが終了した空洞には空洞の全長 を固定するためのチタン製治具がセットされ、治具 を外す事なく仕上げ電解研磨EP-IIが行われる。

その後クリーンルーム内で各種カプラーが設置され、空洞単体性能試験である縦測定が行われる^[3]。

図 3: ILC/STF 超伝導空洞 (左上)縦測定準備段階 (右上)連結された 4 空洞 (下)横型クライオスタット

縦測定で所定の性能が確認された空洞にはチタン 製ヘリウムジャケットが溶接される。大電力用入力 カプラーの設置後に4空洞が連結される。さらに チューナー等各種機器類を設置後、横型クライオス タットに納められ高周波測定が行われる。これを横 測定と呼ぶ。クライオモジュール内は断熱真空槽、 液体ヘリウム槽、空洞内部の3層構造になっている。 測定での空洞内真空度は10^{-.8} ~ -7 Paであり、また室温300Kから液体ヘリウム温度4.2K、さらには液体ヘリウム槽を減圧し2K以下で測定を行う。横測定では断熱真空槽内圧力も大気圧から真空まで変化する。これら圧力変化、温度変化に因る周波数変化量を把握しておく事も目的とする空洞共振周波数を得るために重要である。

3. 空洞の共振周波数変化

空洞の共振周波数変化は空洞内部及び外部の圧力、 温度、研磨量に依存する。表1はMHI-05,06号機の、 表2はMHI-07,08号機の、縦測定に至る各工程での周 波数変化量を示す。MHI-09号機については現在未 測定である。300Kから4Kに至る過程の周波数変化 量には空洞内部圧力が大気圧から真空に変化する分 が含まれる。空洞はチタン製治具で固定されている が、ニオブとチタンの線膨張係数がほぼ等しいため 4Kから2Kへの減圧過程での周波数変化は少ない^[4]。

受け入れ時の周波数が05,06号機では1298MHz、 07,08,09号機では1296MHzなのは、ハーフセルにお ける電子ビーム溶接時の条件を変更した事に因る。 空洞全長は05,06号機では1242mm、07,08,09号機で は1235mmであり、設計長の1247mmより短い。 これらの表から

- 300Kから4Kへの冷却(空洞内圧力変化;大気 圧→真空を含む)に因る周波数変化
 =+2200kHz
- 4Kから2Kへの減圧に因る周波数変化 =-3kHz
- 3) 仕上げ電解研磨EP-IIに因る周波数変化
 - $= -80 \text{kHz} / 10 \mu \text{m}$
- が求められる。

縦測定からは得られない周波数変化の要因として は、治具に固定されていない状況下での4Kから2K への冷却及び真空槽、空洞、ヘリウム槽の圧力変化 がある。表3に既にクライオモジュールで横測定を 終えたMHI-01~04号機での周波数変化を示す。この 表から

- 300Kから4Kへの冷却(空洞内;真空)に因る 周波数変化
 - = +1860 kHz
- 5) 4Kから2Kへの減圧に因る周波数変化 =-350kHz
- 6) 真空槽(1atm→Vac.)に因る周波数変化
 =+440kHz
- 空洞内(Ar gas latm→Vac.)に因る周波数変化 =+330kHz

が得られる。

以上の3) ~ 7)から、仕上げ電解研磨量をX[µm]、 運転周波数として1300MHz、+600kHz分のテンショ ンをかけるとすると、常温、大気圧下でのプリ チューニングでの目標周波数として Fo; target[MHz]=1297.12+0.080X[μ m]/10[μ m] (3-1)

が得られる。最後の微調整は空洞を引っ張る、すな わち周波数を上げる状態で終えるため、仕上げ電解 研磨EP-II 20µmの場合、目標周波数は1297.2MHzに なる。

表1: 各工程における周波数変化量; MHI-05,06

	MHI-0)5	MHI-06		
	Frequency	F.F.[%]	Frequency	F.F.[%]	
As Received	1298.30MHz	69.0	1298.51MHz	48.1	
Aft. EP-I 100µm	-1020kHz	88.5	-1020kHz	50.4	
Aft. 1st.Pretuning	+130kHz	98.4	-230kHz	97.8	
300K to 4K	+1938kHz		+2043kHz		
4K to 2K	-4kHz		-3kHz		
EP-II 50µm	-390kHz	86.7	-350kHz	86.8	
Aft. 2nd.Pretuning	+60kHz	97.1	+140kHz	97.5	
300K to 4K	+1961kHz		+1966kHz		
4K to 2K	-3kHz		-3kHz		
EP-II 50µm	-370kHz	86.9	-370kHz	90.4	
Aft. 3rd.Pretuning	+550kHz	97.0	+710kHz	97.7	
300K to 4K	+2193kHz		+2196kHz		
4K to 2K	-3kHz		-3kHz		
EP-II 20µm			-160kHz	97.9	

F.F.; Field Flatness

表2: 各工程における周波数変化量; MHI-07,08,09

	MHI-07		MHI-08		MHI-09	
	Frequency	F.F.[%]	Frequency	F.F.[%]	Frequency	F.F.[%]
As Received	1296.27MHz	80.3	1296.26MHz	84.0	1295.82MHz	71.2
Aft. EP-I 100µm	-830kHz	82.5	-870kHz	95.5	-820kHz	68.4
Aft. 1st.Pretuning	+1910kHz	97.4	+1810kHz	96.8	+2300kHz	98.3
300K to 4K	+2218kHz		+2217kHz			
4K to 2K	-3kHz		-3kHz			
EP-II 20µm	-160kHz	96.0	-150kHz	96.3		

F.F.; Field Flatness

表3: 横型クライオモジュール内での各工程に おける周波数変化量; MHI-01,02,03,04

	MHI-01	MHI-02	MHI-03	MHI-04	Ave.
Freq. [300K]	1298.236MHz	1298.340MHz	1298.994MHz	1298.269MHz	
Freq. [4K]	+1907kHz	+1871kHz	+1821kHz	+1835kHz	+1860kHz
Freq. [2K]	-336kHz	-344kHz	-353kHz	-384kHz	-354kHz

Vacuum vessel (latm.), Cavity (Ar gas latm), He vessel (latm)					Ave.
	1297.422MHz	1297.433MHz	1298.062MHz	1297.316MHz	
Vacuum vessel (1atm.), Cavity (Vac.), He vessel (1atm)					
	1297.781MHz	1297.766MHz	1298.320MHz	1297.674MHz	
∆Freq.	+359kHz	+333kHz	+258kHz	+357kHz	+327kHz
Vacuum vessel (Vac.), Cavity (Vac.), He vessel (1atm)					
	1298.133MHz	1298.217MHz	1298.818MHz	1298.121MHz	
∆Freq.	+352kHz	+452kHz	+498kHz	+448kHz	+438kHz

4. 電場平坦度の劣化

表1より仕上げ電解研磨量が50µmの場合、電場平 坦度が著しく劣化している事が分る。図4-1,2は MHI-05,06号機仕上げ電解研磨EP-II 50µm施工後の 電場分布及び各セルの周波数変化を示す。この図か らセル毎の研磨量が不均一である事が分る。

図 4-1: EP-II 50µm 前後の電場分布 MHI-05(上),06(下)

図 4-2: 各セルの周波数変化

研磨量を減らせば不均一さも緩和されると考え、 仕上げ電解研磨EP-II 20µmにした場合のMHI-06~08 号機電場分布及び各セルの周波数変化を図5-1,2に示 す。

図 5-1: EP-II 20µm 前後の電場分布 MHI-06(上),07(下)

図 5-2:上: MHI-08 EP-II 20µm 後の電場分布 下:各セルの周波数変化

仕上げ電解研磨EP-II 20µmではいずれの場合も電 場平坦度の劣化は見られなくなったが、エンドセル の周波数変化が大きく、センターセルは小さいとい う傾向に変化はない。これは、エンドセルはセン ターセルに比べて削れている事を示している。仕上 げ電解研磨EP-II 50µmの時と同様にセル毎の研磨量 の不均一さは解消されていない。電解研磨液の流れ あるいは液温が一様でない事が原因と考えられるが 現在調査中である。

5. まとめ

ILC/STF用超伝導空洞の各工程での周波数変化量 を把握し、1300MHzで運転するために必要なプリ チューニングでの目標周波数を決める計算式を得た。 仕上げ電解研磨EP-II 50µmでは電場平坦度の劣化が 起こるが20µmでは起こらない事を確認した。しか しセル毎の研磨量が不均一であり、この原因究明と 改善が急がれる。

参考文献

- [1] K.Ueno, et al., "Development of Electro Polishing(EP) Facility in KEK", 第5回日本加速器学会年会, 第33 回リニアック技術研究会, 広島 (2008) p628.
- [2] T.Shishido, et al., "Frequency Tuning of an Accelerating Mode in STF Baseline Cavities",第3回日本加速器学 会年会,第31回リニアック技術研究会,仙台 (2006) p865
- [3] T.Shishido, et al., "Frequency Tuning of an Accelerating Mode and Vertical Tests in the STF Baseline Cavities",

第4回日本加速器学会年会,第32回リニアック技 術研究会,和光 (2007) p452

[4] 加古永治, "超伝導空洞の高周波設計", OHO '06 高エネルギー加速器セミナー