TUNE OPTIMIZATION FOR RESONANT COUPLING AT S-LSR

Hikaru Souda^{*A)}, Masao Nakao^{A)}, Hiromu Tongu^{A)}, Akira Noda^{A)}, Kouichi Jimbo^{B)},

Toshiyuki Shirai^{C)}, Hiromi Okamoto^{D)}, Manfred Grieser^{E)}, Alexander Smirnov^{F)}

A) Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan

B) Institute of Advanced Energy, Kyoto University Gokasho, Uii, Kyoto, 611-0011, Japan

C) National Institute of Radiological Sciences

4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan

D) Graduate School of Advanced Sciences of Matter, Hiroshima University

1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan

E) Max-Planck-Institut fur Kernphysik
Saupfercheckweg 1, 69117 Heidelberg, Germany
F) Joint Institute for Nuclear Research
Dubna, 141980 Moscow region, Russia

Abstract

Betatron and synchrotron tunes are optimized in order to enable transverse laser cooling by resonant coupling at S-LSR. Magnetic field of quadrupole magnets are initialized by a excitation current of 180A for a minute and set to 10 30A to control the betatron tunes to a precision of 0.001. Synchrotron tunes can be changed from 0 to 0.1 by an rf voltage applied on a small drifttube. In the laser cooling experiment, an indication of coupling: reduction of a beam size from 0.9 to 0.55 mm and larger momentum spread was observed at a tune condition. of (nx, ny, ns)=(2.068, 1.105, 0.068).

S-LSR での共鳴結合のためのチューン調整

1. はじめに

京都大学化学研究所のイオン蓄積・冷却リング S-LSR^[1] では、²⁴Mg⁺ ビームをレーザー冷却によって 極低温まで冷却し、結晶化ビーム^[2] を生成すること を目指している。

レーザー冷却は非常に強い冷却力を持つが、その 冷却作用は照射した方向に限られ、加速器・リング 中を運動するイオンについては実質的に進行方向に しか冷却できない。このため、冷却できない横方向 の運動がIntra-beam scattering によって進行方向に流 入することで、進行方向の到達温度が一定より下が らないという現象が見られた^[3]。

このため、より低温まで冷却するためには、進行 方向だけでなく横方向の温度を下げる必要があると 考えられる。レーザーで直接冷却できるのは進行方 向だけだが、運動量分散が0でない地点にRF空洞を 配置し、ベータトロン振動とシンクロトロン振動の 共鳴を利用することで、進行方向の冷却力を横方向 に伝える手法が理論的に示され^[4]、シミュレーショ ンも行われている^[5]。

S-LSR では、この共鳴結合による横方向のレーザー 冷却を実現すべく冷却実験を行っているが、共鳴状 態を実現するにはシンクロトロンチューン・ベータト ロンチューンの小数部を一致させる必要がある。こ のため、実際の実験においては、これらのチューン を実際に測定しながら微調整し、共鳴状態にあるこ とを確認する必要がある。

2. 実験装置

S-LSR の全体図は図 1、主要パラメータは表 1 の通 りである。イオン源 CHORDIS から引き出した 24 Mg⁺ ビームを 40kV の静電高圧で加速し、リング内に導 入してレーザー冷却実験を行っている。冷却用レー ザーはポンピングレーザー (Coherent, Verdi V-10) の 532nm 出力を色素レーザー (Coherent, CR699-29) で 560nm に変換し、倍波生成器 (Coherent, MBD-200) で 280nm にしている。280nm のレーザー出力は最大 50mW 程度である。レーザー冷却を行う直線部のア パーチャーによってレーザーと 24 Mg⁺ ビームとのア ライメントを行っている。

S-LSR の Lattice は、現在使用している $(\nu_x, \nu_y) =$ (2.0, 1.0) 付近の動作点では FODO Lattice であり、偏 向磁石の両端に配置された四重極磁石について、上流 側が QF、下流側が QD となっている。S-LSR は 6 回 対称のリングであり、偏向磁石 6 台、上流側 QM6 台をそれぞれシリーズ励磁している。したがって、ベータトロンチューンの調整要素は、上 流側 QM(QM1 系) 電流値、下流側 QM(QM2 系) 電流 値の 2 つである。

^{*} E-mail:souda@kyticr.kuicr.kyoto-u.ac.jp

図 1: S-LSR 全体図

	表 1:	S-LSR 主要パラメー	タ
--	------	--------------	---

周長	22.557 m
曲率半径	1.05 m
イオン種	$^{24}Mg^+$ (40 keV)
周回周波数	25.192 kHz
²⁴ Mg ⁺ 励起準位	$3s^2S_{1/2} \rightarrow 3p^2P_{3/2}$
励起波長	280 nm

シンクロトロンチューンの調整は直線部に配置した 小型 Drifttube で行う。Drifttube がある点での dispersion はチューン設定により変化するが、1.0 ~ 1.2m である。RF 電力の投入は図 2 のようになっており、 信号源の AM 外部入力端子に Function Generator の信 号を入れて、入射時は電圧 0 で時間の 2 次関数で電 圧を立ち上げる Adiabatic Capture を行っている。

図 2: RF 系ブロック図

x-y coupling は BM2, BM3 の間にある Electron Cooler 中央部のソレノイド磁場を用いる。ソレノイ ド磁場の有効長は 1.2m である。陽子の電子ビーム冷 却に用いる場合は電子銃、中央部、コレクタ部とその 間のトロイド部のコイルを直列にして電流を流して いるが、トロイド部の磁場があるとビームが横方向 に力を受けこれを補正する必要が生まれるため、配線 を変更して中央部コイルのみを励磁するようにした。 各チューンは Beam Transfer Function を測定して算 出している。ブロック図は図 3 の通りで、Network Analyzer(Agilent 4395A)からの出力を RFKO 水平電 極に印加し、ビームの振動と共鳴した時に励起される 振動を三角板型 Pickup で検出し、Network Analyzer で Sideband 周波数を測定している。Sideband が水平・ 鉛直のどちらのチューンを表すかは QM 電流値を変 化させた際の挙動で判断している。またチューンの 整数部は補正なしの時の COD を測定して変動周期を 調べるとともに、MAD で計算して一致することを確 認している。今回の条件ではいずれも ν_x の整数部は $2,\nu_y$ の整数部は 1 である。

図 3: Beam Transfer Function 測定のブロック図

3. ベータトロンチューンの調整

ベータトロンチューンを低くしすぎると整数共鳴 によるビーム寿命の減少が起こるが、シンクロトロ ンチューンは 0.1 程度までしか上がらないため、共 鳴に影響する小数部が 0.07 ~ 0.10 になるように調 整を行った。この時、水平・鉛直チューンの小数部 が近いと x-y coupling の影響で、図 4 のように小数 部の値が一致する点からチューンの値がずれる Tune Separation が発生している。

図 4: $\nu_x = \nu_y = 0.10$ 付近でのベータトロンチューン 測定

を0Aから40A(100Gauss)まで変化させることで図5 のように変化している。0Aではなく20Aの時にこの Separationが最小値を取ることから、これに相当する Skew 成分などのCoupling 要素がリングに存在する と考えられる。現在ソレノイド等によるカップリン グの強さと冷却結果の有意な相関は観測されていな いが、鉛直方向を含めた3次元冷却を行うため今後 さらに調査を進める予定である。

図 5: $(\nu_x, \nu_y) = (2.07, 1.07)$ 付近でソレノイド電流を 変えたときのチューン変化

4. シンクロトロンチューンの調整

シンクロトロンチューンの測定も、ベータトロン チューンと同様に Sideband を測定して行っている。 RF なしでの bare tune が $(\nu_x, \nu_y) = (2.068, 1.105)$ の 条件で、Drifttube に印加する RF 電圧を 10V から 90V まで変化させてベータトロンチューン・シンクロトロ ンチューンを同時測定した結果が図 6 である。強い 結合を持つ進行方向と水平方向が RF 電圧 25V-35V、 チューン小数部 0.068 付近で共鳴していることがこ の測定結果から読み取れる。

図 6: $(\nu_x, \nu_y) = (2.068, 1.105)$ でのベータトロン、シ ンクロトロンチューン測定

この測定結果を元に、RF電圧を変えながらレーザー 冷却を行い、冷却後のビームサイズをCCDカメラで 測定し、冷却中の運動量広がりを速度掃引とPMTに よる蛍光量測定によって測定したところ、チューンが 共鳴を示す条件においてビームサイズが0.55mmと 他の条件より小さくなり、運動量広がりが他の条件 より大きくなるという結果が得られた^[6]。これは水 平方向の熱が進行方向に流入することにより、間接 的に水平方向が冷却されたことを示唆している。た だし、x-y coupling に近い条件においては共鳴からず れた点でこのビームサイズ減少が起こり、共鳴点付 近ではビーム寿命が減少するなどの挙動が見られて おり、今後はこの付近でのさらなる調査を行い、鉛 直方向を含めた3次元のレーザー冷却の実現に向け て実験を進めていく予定である^[7]。

図 7: ν_x, ν_y) = (2.068, 1.105) での冷却後運動量広が りとビームサイズ

5. 謝辞

本研究は、先進小型加速器事業、京都大学グロー バル COE プログラム「普遍性と創発性から紡ぐ次世 代物理学」、および日本学術振興会特別研究員奨励費 の援助を得て行われました。

参考文献

- [1] A. Noda, Nucl. Instrum. Methods 532, 150 (2004).
- [2] J. Wei, X. ping Li and A. M. Sessler, Phys. Rev. Lett. 73, 3089 (1994).
- [3] M. Tanabe *et. al.*, Applied Physics Express **1**, 028001 (2008).
- [4] H. Okamoto, Phys. Rev. E 50, 4982 (1994).
- [5] Y. Yuri and H. Okamoto, Phys. Rev. ST-AB 8, 114201 (2005).
- [6] M. Nakao et. al., in this proceedings.
- [7] A. Noda et. al., in this proceedings.