京都大学原子炉実験所における 加速器駆動未臨界炉のための FFAG 加速器の開発*

石 禎浩、森 義治、井上 信、上杉 智教、栗山 靖敏 (京都大学原子炉実験所)、 Thomas Planche、Jean-Baptiste Lagrange、高島 将、山川 恵美 (京都大学大学院工学研究科), 酒井 泉、岡部 晃大、今津 英樹、高鉾 良浩 (福井大学大学院工学研究科)

Abstract

京都大学原子炉実験所では加速器駆動未臨界炉のた めのFFAG加速器の研究開発を行い、2009年3月には 世界初となる、陽子加速器のビームによる核破砕中性子 を用いた ADSR実験を開始した。この実験では、FFAG からの陽子ビームをタングステンターゲットに照射す ることにより発生する中性子を京都大学臨界集合体装 置に構築した未臨界核燃料体系に導入し、この中性子が 核分裂反応により増倍される事を確認した。ここでは、 加速器システム、ビーム調整とビーム特性および ADSR 実験の概要について報告する。

はじめに

加速器駆動未臨界炉(以下 ADSR: Accelerator Driven Subcritical Reactor)は加速器で加速された陽子ビーム を原子炉内部に設置されたターゲットに照射して得られ る大量の核破砕中性子を用いて、未臨界核燃料体系での 核分裂連鎖反応を誘起・維持し、炉中での中性子増倍を 通じてエネルギーを発生・増幅させるシステムである。 中性子の発生が加速器のビームに由来するため、加速器 からのビームを止める事により未臨界状態の原子炉は 必然的に停止することから、ADSR はより安全性の高 いシステムということができる。

ADSR の特徴として、加速器からのビームパワーを 調整することにより、原子炉の出力を制御することが可 能であるという点があげられる。未臨界炉からの出力 Pは中性子源の強度Sおよび未臨界核燃料体系の実効 増倍率 k_{eff} 用い、式1で与えられる。

$$P \sim \frac{S}{1 - k_{eff}} \tag{1}$$

実効増倍率 k_{eff} は制御棒等で調整が可能で、S は加速 器のビームエネルギーやビーム電流を変化させること で調整可能となる。

KURRI における ADSR 計画

京都大学原子炉実験所(以下 KURRI:Kyoto University Research Reactor Institute)では文部科学省のエネルギー 対策特別会計委託事業による委託業務として、「FFAG 加 速器を用いた加速器駆動未臨界炉に関する技術開発」を 実施した。この計画は KURRI に設置された京都大学臨界 集合体(以下 KUCA:Kyoto University Critical Assembly) と陽子加速器を結合させ、中性子エネルギーに依存した 中性子増倍特性を中心とした未臨界炉特性に関する実 験的研究を核設計計算との比較・検討を行うとともに、 エネルギー発生装置としての基本的な成立性評価を主 目的としている。

現時点で、D-T 反応(核融合反応)によって発生する 14MeVのエネルギーの中性子によって駆動される ADSR の実験は既になされているが、100MeV 級のエネルギー の陽子をターゲットに当てて発生させた中性子によって 駆動される ADSR の実験は未だなされていない。した がって、高エネルギーの陽子加速器による ADSR 実験 は本研究が世界初の試みである。

KUCA は最大出力 100W(短時間に限り 1kW、通常 運転時は 10W 以下)の小型研究炉で、動力炉や大型の 研究炉と比較して低出力であるため炉心の組み替えが 容易で、原子炉物理や放射線物理等の基礎研究に利用 されている。ADSR に用いる加速器システムに関して は、エネルギー可変性を確保しつつ、高いビーム強度 が得られる固定磁場強収束型(以下 FFAG: Fixed Field Alternating Gradient)シンクロトロン方式を採用した。 FFAG は磁場が一定であるため、運転周期を通常のシン クロトロンの 100 - 1000 倍程度上げる事が可能となり、 空間電荷効果による電流値の制限を大幅に改善する事 ができる。表1に KURRI での ADSR 実験パラメター を示す。

表1:FFAG-KUCA による ADSR 実験のパラメター

原子炉出力	$\sim 10 W$
中性子増倍率	≤ 100
ビームパワー	$\leq 0.1 \mathrm{W}$
ビームエネルギー	100 - 150MeV
ビーム電流	≤ 1 nA

FFAG 加速器システム

ADSR 実験で KUCA に結合する加速器システムはイ オンベータ、ブースター、主リングと呼ばれる3つの 円形加速器から構成され、これらのリングにはすべて FFAG 型の収束系がもちられている。このうち、イオン ベータにはスパイラル型の FFAG 収束系、トリムコイ ルによる磁場形成、誘導加速方式が用いられており、こ れらは陽子 FFAG 加速器としては世界初の試みである。 表2に FFAG 加速器複合系の基本パラメターを示す。

ゼロクロマティシティーを実現するために FFAG リ

^{*}本研究は、文部科学省のエネルギー対策特別会計委託事業による 委託業務として、国立大学法人京都大学が実施した「FFAG 加速器を 用いた加速器駆動未臨界炉に関する技術開発」の成果に基づくもので ある。

表 2:FFAG 加速器複合系基本パラメター			
	Injector	Booster	Main Ring
Focusing	8-cell spiral	8-cell radial	8-cell radial
Acceleration	Induction	RF	RF
Field index k	2.5*	4.5	7.5
Energy(max)	1.5(2.5) MeV	11(20) MeV	100(150) MeV
P_{ext}/P_{inj}	5.00 (Max)	2.84	2.83
Average orbit radii	0.60~0.99 m	1.42~1.71 m	4.54~5.12 m
	* •	0.1.1	

* Output energy of the injector is variable

ングでは磁場 Bが軌道半径 rに $B(r) = B_0 \left(\frac{r}{r_0}\right)^k$ の依 存性をもつ様に設計される(ここで、 B_0, r_0 は定数)。 ブースターおよび主リングではこの磁場分布を磁極の 形状によって実現しているが、イオンベータでは主コイ ルの他に、上下平行かつ平坦な磁極面に 32 本のトリム コイルを配置し、電流を独立に調整することにより、上 記の磁場分布を実現し、かつ可変な k 値を得ることが できる。この k 値を変化させる事により、取出しエネル ギーを可変にすることができ、さらにブースター及び主 リングの磁場を調整することで、最終的に主リングから のビームの取出しエネルギーを調整する事が可能とな る。図1に KURRI に建設された FFAG 加速器複合系を 示す。

図 1:KURRI に建設された FFAG 加速器複合系

加速器運転・ビーム調整

全ての DC 電磁石を初期化することから日常の加速 器運転が開始される。初期化の値は各電磁石で想定さ れる最大励磁量とした。ビーム入射及びビーム取出し 用のパスル電磁石ならびに高圧電極については初期化 を行っていない。イオン源の本体および高圧デッキには 124.4kVの電圧を印加する。ブースター入射以降のビー ム調整を容易にする目的で、イオン源から取出された ビームはイオンベータの入射以前にビームチョッパーに よってチョップされる。チョップ後のビームパルス幅は、 ブースターでのマルチターン入射に必要なパルス幅に あわせて約7µsで運転している。

イオンベータではビームは、硅素鋼板でできた誘導 コアを励磁することで得られる誘導電場で加速され、静 電電極で引き出される。引き出しの効率を上げるため、 水平方向のコヒーレント振動を用いているが、入射時の 振幅に依っては取出されるビームが複数ターンに及ぶ場 合があり、この場合はブースターへの入射及び加速効率 が下がることになる。このため、ブースターへの入射お よび加速(場合によりブースターからの取出し)効率を 観測しながらイオンベータの入射電極の電圧を調整し ている。

ブースターおよび主リングでは RF 加速を行う。イオ ンベータのコア励磁波形およびブースター・主リングの RF 波形を図2に示す。現在、3つのリングは30Hz で

図 2:3つのリングの加速電圧パターン

運転されている(コア電源は安定性の観点から 120Hz で運転)。ブースターから主リングへのビーム入射はバ ンチ-バケット入射を行っているため、それぞれの加速 位相の同期をとる必要があるが、2つのRFパターンを 1台の任意波形発生器(Tektronix AWG430-3ch)で生成 することにより、独立な RF パターンを共通のクロック で制御する事が可能となった。ブースター入射以降の立 ち上がりの速いパルス機器は、RF と同期をとる必要が あるため、AWG430で生成したトリガーで励磁されて いる。また、マスタートリガーは商用 60Hz に同期して 生成されている。なお RF 加速のためのフィードバック はブースター・主リングともに用いていない。

ブースターおよび主リングのバンチモニターからの 出力波形を図3に示す。ブースターでは顕著なビームロ スは無いが、主リングにおいてビームロスが発生が観 測される。主リングから取出されたビーム強度は現時

2009/3/4 FFAG-KUCA ADS Exper ment 10000 k_{eff}=0.99 1000 k_{eff}=0.96 100 k_{eff}=0.91 10 001 002 0 0 2 5 003 0 0 3 5 0 0 0 0 5 0015 004 Time (sec)

図 5:異なる keff での中性子発生量の時間変化

点での放射線管理上の規制値である 0.1nA に到達して いるが、今後計画されるビーム増強に向けて、このビー ムロスの原因を究明中である。なお、KURRI における FFAG システムとビーム調整に関するより詳細な記述に ついては文献 [1] を参照されたい。

ADSR 実験

主リングから取出されたビームをビーム輸送系 (MCBT 系) を通過させ KUCA へ導入し、炉室内に設 置されたタングステン・ターゲットに陽子ビームが照射 される際発生する中性子発生量が最大となるように、輸 送系に配置された偏向電磁石、四極電磁石、ステアリン グ電磁石の励磁量の調整を行った。 具体的には、輸送 系最下流の四極電磁石近傍と炉室内上流部およびター ゲット近傍3カ所に高感度³He 比例計数管を設置し、上 流2カ所での測定値が最小になり、かつターゲット近傍 での測定値が最大となるような調整を行った。図4に

図 4:KUCA 内に設置された未臨界炉心

KUCA 炉室内に構築された未臨界炉心を示す。ビーム

ラインの終端部にタングステンターゲットが真空中に 設置されている。また、炉心近傍には³He 検出器が設 置されている。この検出器で測定されたパルス中性子の 時間応答を図5に示す。この図から、中性子発生量の時 間変化が実効増倍率によって異なる事がわかる。すなわ ち、ビーム照射直後に指数関数的な減衰を示す即発中性 子成分と、時間的にほぼ一定の値を示す遅発中性子成 分が観察されているが、実効増倍率が大きくなるに従っ て、即発中性子成分の減衰が遅くなり、遅発中性子レベ ルが上昇する傾向が見られる。

結論

KURRIにおいて3つの FFAG リングから構成される 加速器複合系を建設し、ビーム調整の結果 100MeV 陽 子ビームを主リングから取出すことに成功した。また、 このビームを KUCA に輸送し、炉室内に設置されたタ ングステンターゲットに照射し核破砕中性子を発生させ た。さらに、この中性子をターゲット下流に構築された 未臨界炉心に導入し、未臨界核燃料体系において核分裂 反応により増倍されることを確認した。これにより、世 界で最初の高エネルギー陽子を用いた加速器駆動未臨界 炉の実験に成功した。今後は ADSR 実験の効率を上げる ため、ビームエネルギーを現状の 100MeV から 150MeV に上げるとともに、ビーム強度増強をすすめ、建屋の遮 蔽能力から決まる制限値である 1nA 達成を目標とする。 また、将来的にはシステム成立性の実証のため、FFAG 加速器のビーム強度を空間電荷効果による制限値まで 上げることを計画中である。具体的には、大強度線形加 速器からの H⁻ ビームを荷電変換入射により FFAG 加 速器複合系の主リングに直接入射し、ビーム強度の増 強を測る。空間電荷効果によるチューンシフトの制限値 を $\Delta \nu \sim 0.25$ としエミッタンスを $\epsilon_x = 200\pi$ mm-mrad, $\epsilon_{y} = 100\pi$ mm-mrad とすると許容されるビーム電流は 12μA 程度である。この電流値を目標として、現在 H⁻ 入射に関する設計・検討を実施中である。

REFERENCES

[1] 森 義治, "京都大学原子炉実験所における FFAG 加速器 の開発", 加速器学会誌, April 2008, vol.5 no.1, p. 27.