FLUCTUATION IN THE OUTPUT POWER OF SASE-FEL AT ISIR, OSAKA UNIVERSITY

C.Okamoto¹, R.Kato, S.Kashiwagi, T.Igo, T.Noda, K.Kobayashi, S.Suemine, G.Isoyama Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047

Abstract

We are conducting experimental study on Self-Amplified Spontaneous Emission (SASE) in the far-infrared region using the L-band linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. The intensity of SASE fluctuates intrinsically because the number of coherent optical pulses generated in an electron bunch is limited. In the actual system, however, another factor producing intensity fluctuations also shows up, which is instability of the electron beam. In this paper, we will report the fluctuation in the output power and results of observation of SASE, measured at ISIR.

阪大産研におけるSASE-FELの出力変動

1.はじめに

阪大産研ではLバンド電子ライナックを用いて SASE-FELの基礎研究を行っている。これまでの実 験ではライナックの不安定性による電子ビームの変 動が大きく、SASEの出力強度も常に大きく変動し ていた。阪大産研では一昨年度から電子ビームの高 安定化を目的としてLバンドライナックの大規模な 改造を行ってきた。現在は改造前に比べ安定した電 子ビームが得られている。その電子ビームを用いて 行った実験でSASEの発生を再確認した。本稿では まずSASEの出力変動の要因について述べた後、改 造前の電子ビーム安定性とSASEの出力変動の測定 について述べ、同様に改造後のSASEの測定につい て報告する。

2. 阪大産研SASE実験システム

阪大産研のLバンド電子ライナックは3台のSHB により構成される入射器を持つ。単バンチ運転モー ドの時には、電子銃より最大ピーク電流20A、パル ス持続時間5nsの電子ビームがSHBシステムに入射 される。ここで500ps程度まで圧縮された電子パル スは加速周波数1.3GHzのプリバンチャー、バン チャー、主加速管により、11から32MeVまで加速さ れる。この電子ビームはアクロマティック輸送路に より、SASEシステムに導かれる。ウィグラーは周 期長6cm、周期数32のHalbach型ウィグラーで、K値 は磁極間隔を変えることにより0.013から1.472まで 可変である。ウィグラーで発生したSASEは光輸送 路を通り分光器に導かれる。分光器によって単色化 された光はGe:Ga検出器により検出される。電子 ビームとウィグラーの主要なパラメータを表1に示 す。

3.SASEの出力変動要因

SASEの出力が変動する要因には、SASE固有の統計的な変動によるものと、電子ビームの変動による ものの2つに大別される。

まずSASE固有の統計的変動について述べる。 SASEは自発放射のノイズ成分を種光とするので、 その出力強度は電子ビームの安定度に関係なく、統 計的に変動する^{[1],[2]}。またSASEは時間に依存せずに ランダムに発生するため、統計変動を抑えるために 長時間で平均する。電子ビームのバンチ長さを観測 時間として、この中に含まれるコヒーレント光の平 均のパルス数をM、SASE強度をI、その平均値を<I> とすると、SASE強度分布はガンマ分布に従い次の

表1. 電子ビームとウィグラーの主要なパラ

メータ	
Electron beam	
Accelerating freq.	1.3GHz
Energy	11-32 MeV
Energy spread	1.1-4 % (FWHM)
Charge/bunch	> 20 nC
Bunch length	20-30 ps
Peak current	> 1 kA
Normalized emittance	150-250 π mm mrad
Repetition	60 Hz
Mode	Single bunch
Wiggler	
Total length	1.92 m
Magnetic period	60 mm
No. of periods	32
Magnet gap	120-30 mm
Peak field	0.37 T
K-value	0.013-1.472

¹ E-mail: chikar25@sanken.osaka-u.ac.jp

図1. SASEの強度分布

ように表される。

$$f(I) = \frac{M^{M}}{\Gamma(M) < I >} \left(\frac{I}{< I >}\right)^{M-1} exp\left(-M\frac{I}{< I >}\right)$$

ここで $\Gamma(M)$ はガンマ関数である。強度の平均値を 1として計算した分布関数を図1に示す。光がコ ヒーレントである範囲とバンチ長さの差がわずかな 場合は、M=1の分布になる。このときの分布は図 のように強度が大きくなるにつれ単調減少する。こ の場合、出力強度は100%の幅で変動する。バンチ 長が十分に長くなるとガウス分布に近づき、強度変 動幅は小さくなる。

次に、電子ビームの変動もSASEの出力強度に影響する。ライナックの不安定性により電子ビームの エネルギー、エネルギー広がり、電荷量やバンチ長 さが変動すると、最終的にSASEの増幅度やパルス 幅、波長などに変動をもたらす。分光器で波長を固 定して取り出す場合は、電子ビームのエネルギー変 動によりSASEの波長が変化し、観測される出力は 大きく変動する。

このようにSASEの出力強度変動は独立した2つ の変動の重ね合わせとなる。このため、平均パルス 数Mが十分に大きくない場合は、電子ビームの変動 と合わせて強度は大きく変動する。阪大産研の SASEシステムではMが1~2程度であるので^[3]、電子 ビームの変動に加えSASE固有の統計変動も大きい と考えられている。

4. ライナック改造前の測定

図2にライナック改造前の2002年に測定した 電子ビーム強度とSASE出力強度の変動を示す。電 子ビームはウィグラー入口に設置してあるコアモニ ターの出力、SASEは回折格子により分光した184 µmの基本波を測定したものである。電子ビームの 強度が不安定だということが分かる。図中の電子 ビーム強度がゼロになっている点は、ビームエネル

図2. 改造前の電子ビームとSASE出力変動

図4. 改造後の電子ビームとSASE出力変動

図5. 改造後のSASE出力強度分布

ギーの突発的な変化によりビーム軌道が大幅にずれ たものと考えられる。この点を除いたビーム強度分 布の標準偏差は10.7%であった。平均強度を1とした SASE出力強度の分布を図3に示す。分布中の強度 が最も低い点付近にピークがあり、強度が高くなる と急激に頻度は小さくなる。

5. ライナック改造後の測定

5.1 SASEの観測

産研Lバンド電子ライナック改造後、初めての SASEを観測した。その時間プロファイルを図6に 示す。このときの電子ビームのエネルギーは 16.7MeVで、エネルギー広がりは2.0%(FWHM)で あった。ウィグラーの磁極間隔は30mmで、K値は 1.47である。測定は分光を行わず分光器内の回折格 子をミラーに変更して行った。SASEの中心波長は パラメータから計算して、90μm付近であると推測

図6. SASE光の時間プロファイル

される。

5.2 電子ビームとSASE変動の測定

図4に測定した電子ビーム強度とSASE出力強度 の変動の様子を示す。電子ビームの強度分布の標準 偏差は1.46%で、改造前に比べ安定している。図5 のSASE出力強度の分布は図3に比べてピークが右 にずれている。電子ビームが安定することにより、 SASE出力変動のうち電子ビームの変動による影響 が緩和され、SASE固有の変動に近づいた可能性が あるが、これについては現在検討中である。

6.まとめと今後の予定

阪大産研Lバンド電子ライナック改造後、SASE実 験を再開し、SASEの発生を確認した。そしてSASE の変動要因を解析するためにビーム電流とSASE出 力を測定した。今回の実験では、まずSASEを観測 するために、電子ビームを比較的高いエネルギーに して測定を開始した。今後はエネルギーを下げてい き、波長領域の拡大や出力の増大をねらう予定であ る。また、改造前に測定したデータと同じ184µmに おいて分光測定を行い、より近い条件で変動を比較 したいと考える。

参考文献

- R. Bonifacio, L. De Salvo, P. Pierini, N. Piovella, and C. Pellegrini: Phys. Rev. Lett. 73, 70 (1994)
- [2] E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov: Optics Comm. 148, 383 (1998)
- [3] 磯山悟朗、加藤龍好:放射光 14-3,163 (2001)