VUV and Soft X-ray High-brilliance Light Source (Super SOR)

H.Takaki^{1,A)}, H.Sakai^{A)}, N.Nakamura^{A)},

Super SOR Accelerator Design Group

^{A)} Synchrotron Radiation Laboratory, The Institute for Solid State Physics, The University of Tokyo

5-1-5 Kashiwanoha, Kashiwa-shi, 227-8581

Abstract

The University of Tokyo has been promoting the Super SOR project to construct a new synchrotron radiation facility dedicated to sciences in VUV and Soft X-ray (SX) region. The new facility consists of a 1.8 GeV storage ring with 12 insertion devices and more than 20 beamlines applicable to advanced experiments using undulator radiation, a 1.8 GeV booster synchrotron and a 200 MeV linac. The conspicuous feature of the new light source is that the accelerators are designed to satisfy the "top-up operation" to overcome the short lifetime of the electron beam in a storage ring operated with the relatively low energy.

極紫外・軟X線高輝度光源 (SuperSOR)

1. はじめに

東京大学は、全国共同利用を目的とした第三世代 の極紫外・軟X線領域高輝度光源(Super SOR)の建 設を柏キャンパスに計画している[1]。Super SORの 光源加速器、ビームラインと分光光学系、放射光利 用実験計画の具体的設計作業は、東北大学、KEK、 東京大学、理研、分子研、SPring-8等の研究者によ る共同ワーキンググループによっておこなわれて来 た[2]。

加速器の構成は図1に示すように、200MeVの線形 加速器、200MeVから1.8GeVまで電子を加速しフルエ ネルギー入射が可能なブースター・シンクロトロン、 1.8GeVの光源リングから成っている。高輝度の放射 光源では、蓄積ビーム電流の変化に起因する放射光 実験装置の熱負荷の変化が問題になるため、蓄積 ビーム電流を一定に保つように常時入射を繰り返す "トップ・アップ"運転が重要な機能の一つとなる。 それを踏まえて、加速器仕様策定ワーキンググルー プでの検討を元に、Super SORの光源加速器、ブー スター・シンクロトロン、線形加速器の基本性能つ いて報告する。

2. 光源リング

光源リングは、エネルギー1.8GeV、周長約280m、 14個のChasman-Green型のセルからなり、17mの長直 線部2本と6mの長直線部12本を持つ(表1参照)[3]。 6mの長直線部2本は、入射部と高周波加速空洞を設 置するのに使うため、挿入光源が設置可能な長直線 部は12本である。図1に偏向電磁石及びアンジュ レータからの放射光のスペクトルを示す。長さ15m アンジュレータ及び4.5mのアンジュレータを用いて それぞれ10¹⁹ photons/s/mm²/mrad²/0.1%b.w.を超え る輝度の光を提供することができる。

6mの長直線部の両端には四極電磁石のトリプレッ

図2:光源リングから得られる放射光スペクト ル。

¹ E-mail: takaki@issp.u-tokyo.ac.jp

		High- β	Hybrid
		Mode	Mode
Energy	[GeV]	1.8	
Circumference	[m]	280.55	
Emittance	[nm rad]	7.26	7.80
Energy Spread		6.68E-4	6.68E-4
Momentum		1 00E 2	1 00E 2
Compaction Factor		1.00E-3	1.00E-3
Betatron Tune			
Horizontal		14.12	15.20
Vertical		5.18	5.86
Damping Time			
Horizontal	[msec]	19.32	19.32
Vertical	[msec]	19.4	19.4
Longitudinal	[msec]	9.72	9.72
RF Voltage	[MV]	1.4	
RF Frequency	[Mhz]	500.1	
Harmonic Number		468	
Synchrotron Tune		0.00759	0.00759
Bunch Length	[mm]	3.94	3.94
RF Bucket Height		0.0293	0.0293

表1:光源リングの基本パラメータ

トをそれぞれ配置することで、長直線部における ベータトロン関数の自由度を上げている。同様に 17mの長直線部の両側にはそれぞれ4台の四極電磁 石を配置している。特に6m長直線については、中央 部でのベータトロン関数が $\beta_x=17.3m$, $\beta_y=4.3m$ の High- β セクションと、 $\beta_x=1.1m$ 、 $\beta_y=2.6m$ のLow- β セクションを用意した。これは、隣接するアーク部 および他の直線部への影響無しに、長直線部のベー タトロン関数を変化させることができるようになっ ている。図3(a)は、全ての長直線部をHigh-βセク ションにしたHigh-β Modeのオプティクスで、六極 電磁石に対する位相の進み方の対称性が良いため、 広いダイナミックアパーチャの確保が期待できる。 図3(b)はリング半周で5本ある6m長直線部のうち2 本をLow-βセクションにしたHybrid Modeのオプ ティクスである。Low-βセクションは、磁極ギャッ プの小さい挿入光源をインストールしたり、高周波 加速空洞を配置しそのバンチ結合型不安定性を押さ えたりするのに使用できる。また、Low-βセクショ ンは任意の6mの直線部で可能であり、全ての長直線 部をLow-βセクションにする事も可能である。

トップ・アップ運転を行う上でビームの振動源と なりうる入射部は非常に重要である。Super SORで は、バンプキッカー4台と入射セプタムを6mの長直 線内に全て配置することで、非線形磁場を発生する コンポーネントを入射バンプ軌道内から排除してい る。これによって、入射バンプをその大きさに関係 なく閉じることができ、トップ・アップ運転時の ビーム振動は入射ビームのコヒーレント振動だけに なる。

ビーム寿命が短いとトップ・アップ運転のデュー ティーが増え電力や放射線の問題も発生するため、 トップ・アップ運転においてもある程度のビーム寿 命を確保することは重要である。Super SORではダ イナミック・アパーチャーを水平垂直共に20mm以上

High- β Mode, (b) ltHybrid Mode_o

を確保し、光源リング内の真空度を0.5nTorr にすることで、ビーム電流400mAの時に10時間の寿命を確保している。

3. ブースター・シンクロトロン

ブースター・シンクロトロンの周長は93.5mであり、リングのちょうど3分の1である。線形加速器から200MeVで入射した電子を1.8GeVまで1Hzの繰り

表2:ブースター・シンクロトロンの基本パラ メータ

Parameters	Extraction	Injection	
Energy	1.8GeV	0.2GeV	
Circumference	93.5m		
Lattice	Modified FODO		
Harmonic #	156		
emittance	52.1 nm rad	-	
Energy spread	$7.06~ imes~10^{-4}$	-	
Bunch length	13.7mm	-	
Betatron tune	7.35/3.30 (x/y)		
Momentum compaction	0.0108	0.0108	
Damping time (x/y/z)	5.7/5.8/2.9 ms	4.2/4.2/2.1 s	
Bending field	1.25T	0.139T	
RF frequency	500.1 MHz		
Bucket height	0.0070	0.030	

返しで加速する(表2参照)。基本セル構造は、短い周長でエミッタンスを低く出来るModified FODO ラティスを採用し、図4に示すように分散関数がそ のぶん大きくなる傾向がある。

さらに、このラティスの特徴として、モーメンタ ム・コンパクションを非常に小さく出来る(~ 0.003)オプティクスをオプションとして持つため、 仮にトップ・アップ入射時に光源リング のシンク ロトロン振動が問題になる場合でも対処できるよう になっている[4]。

4. 線形加速器

線形加速器の基本構成を図5に示す。6本の2m加 速管と2本の50MWのクライストロン及びスレッドを 使って200MeVまで電子を加速する。運転モードはパ ルス幅10ps、ピーク電流80Aのショートパルスモー ドと10-100ns、400mAのセミロングパルスモードの2 種類がある。ショートパルスモードでは476MHzのサ ブハーモニックバンチャーを使用する(表3参照) [4]。ショートパルスモードはシングルバンチ入射 に、ロングパルスモードはマルチバンチ入射に使用 する。

トップ・アップ運転はショートパルス、ロングパ ルス両モードでおこなう。ただし、光源リング内の

表3:線形加速器の基本パラメータ

Beam Energy	200MeV	
RF frequency	2856MHz	
Repetition rate	50Hz (Max)	
Normalized emittance	< 50 nm rad	
Operation mode	Short	Semi-long
Pulse length	10 ps	10-100ns
Peak current	80A	400mA
Energy spread (FWHM)	0.5%	0.5%

図5:線形加速器の構成図。

バンチ毎の電荷量の一様性を保つために通常の入射 時と比べて線形加速器のピークビーム電流1/20程度 に落とす必要がある。そのため、電子銃直後に開口 径が可変のスリットを置いてビーム電流量を調整で きるようにしている。

マルチバンチ運転においてはセミロングパルス モードを使う事が有効であるが、光源リング及び ブースター・シンクロトロンの高周波加速空洞が 500MHzで運転されるのに対して、線形加速器は 2856MHzで簡単な整数比にならない。これら二つの 周波数は約6MHzのマスターオシレーターを逓倍して 作ることで同期をとってあるが、ブースター・シン クロトロンへの入射時にRFバケットに入らないバン チは必然的に発生するため、入射効率が落ちてしま う。そこで、3 GHzの線形加速器について現在検討 を行っている。

4. まとめ

Super SORの光源リングは、長直線部のベータト ロン関数にフレキシビリティのあるラティス構造を 持ち、多様な挿入光源に対して同時に最適な環境を 提供できる。また、トップ・アップ運転に関しても、 光源リング、ブースター・シンクロトロン、線形加 速器ともに対応できるようになっている。

参考文献

[1] A. Kakizaki, "A New Synchrotron Radiation Facility Project of the University of Tokyo", SRI2003, San Francisco, August 2003, p.25.

- [2] "極紫外線・軟X線光源計画デザインレポート " 平成14年9月。
- [3] H. Takaki et al., "Lattice Design of Super SOR", SRI2003, San Francisco, August 2003, p.105.
- [4] H. Sakai et al., "Design of an Injector for the Super SOR Ring", SRI2003, San Francisco, August 2003, p.69.