## VIBRATION MEASUREMENT OF ACCELARATOR TUBE TABLE IN ATF

Y.Nakayama<sup>A)</sup>, R.Sugahara<sup>B)</sup>, H.Yamaoka<sup>B)</sup>, M.Masuzawa<sup>B)</sup>, S.Yamashita<sup>C)</sup> <sup>A)</sup> Electric Power Development Co.,Ltd., 1-9-88 Chigasaki, Chigasaki-shi, Kanagawa, 253-0041 <sup>B)</sup> KEK, 1-1 Oho, Tsukuba-shi, Ibaraki, 305-0801 <sup>C)</sup> ICEPP, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033

#### Abstract

Acceleration tube fixed to the table should not be a structure to amplify the vibration. Stability of ground is preferable for accelerator beam operation, and the beam control by extremely high resolution is especially demanded in GLC. Then, we have measured ground motion and table vibration in ATF at KEK.

In this paper, some of analyzed results are shown, and we show the characteristics of vibration about the accelerator tube table in ATF.

# ATF加速管架台における振動測定

## 1. はじめに

一般的に加速管架台は地盤等から伝わる振動が増幅されない構造が望ましい。加速器のビーA制御では安定した地盤が望ましく、とりわけGLCのような加速器では、高精度によるビーA制御が要求されている。そこで筆者らは、高エネルギー加速器研究機構(KEK)内にある先端加速器試験装置(ATF)において地盤振動や加速管架台の振動測定を実施した。

本報告では、ATFで実施した振動測定の結果から ATFにおける地盤振動や加速管架台の振動に関する 特徴を示すとともに、偶然にも観測された地震時の 応答特性についても示す。

### 2. 測定の概要

本測定はKEK内のATFに設置された加速管架台において、広帯域微動測定装置を用いて実施した。測定 実施位置を図-1に示す。





測定は図-1中の矢印で示した加速管架台位置にて 実施した。測点は、架台上(P1J)、架台本体下部の 取付け鉄板上(P2J)、架台を固定したコンクリート床上 (P3J)の3点とし、24時間連続測定を実施した。

測定機器の設置位置を**写真-1**に、測定条件を表-1 にそれぞれ示す。また使用した広帯域微動測定の仕 様を表-2に示す。測定前には、機器の比較検定を行い動作状況の確認を行った上で、本測定を実施した。



写真-1 測定装置の設置位置図

| 表-1 測定条件 |                                                    |  |  |
|----------|----------------------------------------------------|--|--|
| 項目       | 内容                                                 |  |  |
| 測定期間     | $2004.2.10 \text{ 5pm} \sim 2004.2.11 \text{ 5pm}$ |  |  |
| サンフ゜リンク゛ | 100Hz(30分測定を連続的に実施)                                |  |  |

|  | 表-2 | 微動測定装置のす | こな仕様 |
|--|-----|----------|------|
|--|-----|----------|------|

| 項目  | 内容                                     |
|-----|----------------------------------------|
| 装置名 | (センサー)東京測振製VSE355G2                    |
|     | (ロガー)東京測振製SAMTAC802H                   |
| 性能  | 周波数:0.012~70Hz,分解能10 <sup>-6</sup> gal |

### 3. 測定の結果

#### 3.1 連続測定の結果

測定は2004年2月10日午後5時から翌11日午後5時 までの24時間、連続的に実施した。測定で得られた データは30分毎の速度時刻歴であり、30分毎のデータに ついてそれぞれ解析を実施した上で、昼夜別(昼 間:9am~5pm、夜間:7pm~3am)に平均化したパワ-スペクトルおよび積分スペクトルを求めた。ここではビームライ ン水平直交成分および鉛直成分に関する、パワ-スペクト ル、積分スペクトルの解析結果を示す。また積分スペクトル の振幅値を10Hz,1Hz,0.1Hzで読取り、昼夜変動を見



るために整理した積分スペクトル値変動についても示す。 まずビームライン水平直交成分に関するものを図-2~ 図-4に、鉛直成分に関するものを図-5~図-7にそれ ぞれ示す。



見ると、全ての測点において0.2~0.4Hz付近および 3Hz付近にピークが認められる。前者は波浪、後者は 人工ノイズの影響によるものと考えられる。架台上

(P1J)では11Hz付近に明瞭なピークが認められる。 これは当該方向に関する架台の固有周波数と考えられ、積分スペクトルでも同様である。なお人工/イズによる3Hz付近のピークに昼夜ご差があるものの、他の周 波数成分のピークに昼夜差は見られない。次に積分スヘ ゚クトル値の変動を示す図ー4を見ると、10Hzで架台上の 振動レベルがコンクリート基礎と比較して非常に大きくなっ ているが、1Hz,0.1Hzでの差は小さい。10Hz,1Hzに おいては昼間の振幅が大きく、夜間の振幅が小さい ことが認められるが、0.1Hzでは昼夜の変動を発生 していない。このことは、0.1Hzで見るとき波浪等 による影響が卓越しているため昼夜変動が現れてい ないものと考えられる。なお2つの時間帯で突出し た値があるものは、地震発生に伴うものである。

次に、鉛直成分に関する図-5及び図-6を見ると、 ここでも0.2Hz付近および3Hz付近に明瞭なピークが認 められており、これらはビーム水平直交成分と同様で ある。なお架台上(P1J)および架台下部鉄板上 (P2J)では、11Hz付近及び30Hz付近においてピーク が認められる。11Hzのピークは先述のビーム水平直交成 分の振動から誘発されるものであり、30Hz付近のピ -クは架台とコンクリートに固定する鉄板との全体系による 固有周波数と考えられ、積分スペクトルも同様である。 次に積分スペクトル値の変動を示す図-7を見ると、10Hz において架台上(P1J)の振動レベルがコンクリート基礎上 (P3J)と比較して大きいものの、水平成分と比べ ると増幅率は小さい。また1Hzでは昼夜変動が最も 顕著であり、昼間の振幅値は夜間の約2倍もの値を 示している。

#### 3.2 地震記録

本測定期間中に2度の地震動を観測した。このうちの一つは2004年2月11日14時04分頃、筑波に近い茨城県南部を震源とするマグニチュート、3.7、震源深さ70kmの地震である。記録された速度応答時刻歴のうちビーム水平直交成分および鉛直成分に関する代表測点(P1J, P3J)の記録を図-8および図-9に示す。

まずビーム水平直交成分について見ると、コンクリート床 上や架台下部鉄板上で-0.032~+0.028(kine=cm/sec)で あるのに対し、架台上では-0.048~+0.051(kine)の応 答を示している。これは応答倍率にして約1.5~2.0 倍である。また鉛直成分についても、コンクリート床上や 架台下部鉄板上で-0.014~+0.013(kine)であるのに対 し、架台上では-0.018~+0.016(kine)の応答を示して おり、若干の振動増幅が認められる。

地震の震源が比較的KEKに近いことから短周期成 分も含有した地震波であることが推測されることか ら、固有周波数成分を中心に振動が増幅されたもの と考えられる。地震波の周波数成分により応答特性 は異なるものと考えられるが、少なくとも何らかの 外部からの入力に対し、架台は振動増幅されやすい 構造になっているものと考えられる。



図-9 地震時速度時刻歴(鉛直成分)

### 4. まとめ

本報ではKEK内にあるATFにて実施した加速管架台 に関わる広帯域微動測定結果について示した。この 測定における主要な結果は下記のとおりである。

- ATF内にある加速管架台は、ビーム水平直交成 分において振動が増幅されやすい。
- ATFに設置されている加速管架台の固有周波 数は、ビーム水平直交成分で11Hz付近、鉛直成 分で30Hz付近であるものと推定される。
- ・加速管架台の振動に関する昼夜変動として、 人工/イズによる影響と思われる3Hz付近の振動は昼間が夜間の約2倍程度に増幅されている。一方、0.3Hz付近のピークは波浪の影響に追随しているものと考えられ、架台の固有周波数である11Hz付近の振動は昼夜を通してそのいベルは概ね一定である。
- 地震記録からも加速管架台では振動が増幅さ れやすいことが明らかとなった。

#### 謝辞

本測定においては、高エネルギー加速器研究機構 早野助教授のご協力により実現したものである。こ こに記して謝意を表する。

### 参考文献

[1] Y.Nakayama, et al., "Characteristics of micro tremor in KEKB (Tsukuba), 第14回加速器科学研 究発表会報告集, Proceedings of the 14<sup>th</sup> Sympsium on Accelerator Science and Technology, Tsukuba, Nov. 11-13, 2003