Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

Development of soft X-ray Source using Inverse Compton Scattering

D.Ueyama^{1,A)}, K.Hizume^{A)}, R.Kuroda^{A)}, Y.Hama^{A)}, M.Washio^{A)}, S. Minamiguti ^{A)}, S.Kashiwagi ^{B)}, H.Havano ^{C)}, J.Urakawa ^{C)}, K.Ushida ^{D)}

A) Advanced Research Institute For Science and Engineering, Waseda University 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555

B) Institute of Science and Industrial Research, Osaka University

8-1 Mihogaoka, Ibaraki, Osaka 567-0047

^{C)} High energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki 305-0801

D) Riken(The Institute of Physical and Chemical Research)

2-1, Hirosawa, Wako, Saitama 351-0198,

Abstract

Soft X-ray source using Inverse Compton scattering has been developed at Waseda University. The 10ps X-ray pulse at 307eV containing 4×10^3 photons was generated by the interaction between electron bunch of 4.2MeV with 0.25nC and Nd:YLF laser pulse of 1047nm with 8.5mJ. Generated X-ray energy was analytically calculated to 307eV in the 20° interaction. The energy of this X-ray is included in the range of "water window" so that this X-ray is useful for the biological observation. In this paper, we report the latest results of X-ray generation experiment.

逆コンプトン散乱による高輝度軟X線発生

概要

早稲田大学理工学総合研究センターでは現在、 フォトカソードRF-gunシステムを用いたテーブル トップサイズの高輝度軟X線発生装置の開発を行っ ている。これは生体観測用の軟X線顕微鏡への応用 を目指すものであり、波長1047nm、パルス幅約 10ps(FWHM)のIRレーザーとエネルギー約4MeV、バ ンチ長10ps(FWHM)の電子ビームとを衝突させるこ とで、約200~450eVの軟X線を発生させることがで きる^[1]。今回は散乱X線の輝度を上げるためレー ザーの増幅と、像記録用にレジスト材を導入してそ の特性評価を行った。本研究会では、それらの結果 について報告する。

1. はじめに

現在高輝度短パルスX線は物理、化学のみならず 医療、産業等様々な分野で求められている。その発 生方法についても多くの研究が行われており、中で も逆コンプトン散乱によるX線発生方法は、高輝度、 短パルス性、エネルギー可変性などの有用な特徴を 兼ね備えたものとして注目されている^[2]。この発生 方法は今まではレーザーや電子ビームの性能という 点で実現が困難であったが近年の電子ビームの高品 質化、レーザー制御技術の発展により実現が可能な ものとなってきた。現在早稲田大学ではRF-gunシス テムを用いたテーブルトップサイズの高輝度軟X線 発生装置の構築と生体観測用の軟X線顕微鏡へと応 用を目指して研究を進めている。

2. 逆コンプトン散乱

逆コンプトン散乱とは、低エネルギーの光子に高 エネルギーの電子が衝突し光子がエネルギーを受け 取るためX線となって散乱される現象である。

図1. 逆コンプトン散乱概念図 実験室系での散乱X線のエネルギーは次式で与え られる。

$$E_{X} = \frac{(1+\beta\cos\phi)E_{e}E_{l}}{\{1+\beta\cos(\phi+\theta)\}E_{e} + (1-\beta\cos\phi)E_{l}}$$

ここでβは電子ビームと光の速度比である。上式 からわかるように衝突角φ、電子ビームエネルギー、 レーザー光子のエネルギーを変えることで散乱X線 のエネルギーを変化させることが出来る。また、散 乱されるX線はエネルギーによって散乱角が異なる ため小さな角度だけを切り出せば非常に単色性の良

¹ E-mail:uedai@suou.waseda.jp

いX線が得られる。図2に、電子ビームのエネル ギーが4.2MeV、レーザー波長1047nmの時の時に得 られるX線のエネルギーについて、衝突角0°、 20°、60°、90°の各計算結果を示す。

今回の実験では電子ビームのエネルギー約4MeV、 レーザー光の波長1047nmであり、上式を用いて散 乱X線の最大エネルギーを計算すると正面衝突の場 合には約310eVと計算できる。この付近のエネル ギーは水にはほとんど吸収されない「水の窓」と呼 ばれるエネルギー領域である。またこの波長領域に は生体内に多く含まれる窒素、炭素、酸素などのK 殻吸収端が存在し、この領域のX線を生体に照射し、 吸収率の差によるコントラストを取れば試料を脱水 することなく細胞が生きた状態で窒素、炭素、酸素 などの分布を観察することが出来る。このことは光 学・電子顕微鏡にはない特徴である。

また、発生するX線の光子数はクライン-仁科の 公式から求めた実験室系での散乱断面積σとルミノ シティLから次のように求められる。

$\mathbf{N} = \sigma \times \mathbf{L}$

本X線発生システムで生成される光子数を上式から見積もると、電子ビーム:4.2MeV,0.25nC,IR レーザー1047nm,8.5mJをそれぞれ80 μ m,約200 μ m まで絞り20度で衝突させた時、およそ10⁴個/pulse のオーダーである。

3. レーザー増幅

今回、衝突のルミノシティを上げるためにフラッ シュランプによるレーザーアンプシステムを構築し た。このシステムはNd:YLFロッド、励起用フラッ シュランプ、冷却装置などから構成されており、ま ず基準信号2856MHzに同期した信号がフラッシュラ ンプ電源へ送られ、フラッシュランプにより結晶が 光励起される。励起された結晶中をIR光が通過する ことでパルスあたりのエネルギーが増幅される。今 回はゲインをかせぐためにロッドを2回通す2passシ ステムにした。またIR光とフラッシュランプの同期 を取るためにパルスジェネレーターで信号のタイミ ングを遅らせ、IR光とのタイミングを調整した。図 3に増幅後のフラッシュランプ電源の電圧とレー ザーのパルスエネルギーの関係を示す。測定した結 果、10mJ以上のパルスパワーを得る事が出来た。

4. 衝突実験

衝突実験として、今回は衝突角を20度に固定して 行った^[1]。まずIR光を20°でコンプトンチェンバー 内に入射し、チェンバー内の衝突点に光学レンズを 用いて集光させ、さらに電子ビームをIR光と衝突す るように位置合わせおよび集束を行った。このとき の電子ビームおよびIR光のビームサイズは表1のと おりであった。

表1. 電子ビームとIRレーザーのパラメーター

~			. ,, ,
	IRレーザー	波長	1047nm
		強度	8.5mJ
		パルス幅(FWHM)	10ps
		ビームサイズ	
		(rms)	80µm
	電子ビーム	エネルギー	4.2MeV
		電荷量	0.25nC
		バンチ長(FWHM)	10ps
		ビームサイズ	250μm(σ x)
		(rms)	150μm(σ y)

電子ビームとIR光のタイミング調整については、 コンプトンチェンバー横方向からガラスを挿入して 電子ビームをチェレンコフ光に変換し、このチェレ ンコフ光とレンズ上にあけたピンホールを通るIR光 をフォトダイオードを用いて観察しながらリニアス テージで光路長を調整することによってタイミング を合わせた。このように同一の検出器を用いること により、時間応答性を考慮せずに幾何学的な距離の みによってタイミング調整を行えるようにした。ま たX線の検出にはMCPを用いた。MCPは衝突点から 84cm下流に設置した。このMCPの有効面積から、 検出有効散乱角は8.8mrad程度であり、約0.5%の単 色なX線を検出することが出来る。

5. 結果

図4にリニアステージを操作して光路長を変化させ、 電子ビームとIR光のタイミングを調整した時の散乱 X線の強度とIRディレイの関係を示す。図4よりシ グナルは約120mVであり、MCPのゲインが5×10⁶、 パルス幅2nsとすると全発生光子数は4.1×10³個と計 算される。表1のパラメータからの計算によると全 発生光子数は1.1×10⁴個となり、この計算値とは異 なる。これは電子の収束が十分でなかったことと、 タイミング調整が十分でなかったことが考えられる。 また、散乱X線のエネルギーは308eVと計算され、 炭素のK殻吸収端を少し上回るエネルギーのX線を 得られたことになる。

6. レジスト材特性評価

像記録用に化学増幅型Deep UV用レジスト材(東 京応化製)を購入し、その特性評価を行った。まず シリコンウエハ上にレジスト材をスピンコートして 薄膜を形成し、AFMで表面を観察した。その結果、 約480nmの膜厚で、表面の自乗平均面粗さ(rms)が 10nm程度であった。

図5.SR光のレジスト材への露光

またレジストの特性を評価するためNi製の100µm 角のマスクを用いて放射光(住友重機械工業製 AURORA-2S)の露光を行った。その際100µmポリ エチレン膜や12µmアルミの膜などを挿入して露光 をおこなった。その結果、本レジストは約1.5keV以 上のX線には感度がないことが判明した。図7に放 射光を露光、現像後のAFM観察像を示す。このレジ スト材が水の窓領域の軟X線に感度を持っているこ とが期待出来る。また早稲田大学のX線発生システ ムでバックグラウンドに感光しないかどうかを確認 するために電子ビームを出しながらのバックグラウ ンド照射も行った。約90分行ったが感光は観察され なかった。よって今後は逆コンプトン散乱生成X線のみを議論することが出来ると考えられる。

図6. フィルター挿入後のSRのスペクトル

図7. SR照射後のレジストのAFM像 (アルミ12µmとBe窓あり)

7. まとめと今後の予定

RF-gunを用いた逆コンプトン散乱によるテーブル トップサイズのX線発生システムの構築をし、軟X 線顕微鏡への応用を目指して研究を進めている。今 回の実験では発生光子数を増やすためにレーザー増 幅システムの構築をした。今後はより多くの光子を 発生させるために電子ビームの電荷量を増やすこと と、電子の収束の最適化を予定している。

また、高感度でなおかつバックグラウンドなどの 高エネルギーのX線には感度がない化学増幅型レジ スト材を像記録用に選択し特性評価を行った。今後 実際にレジスト材に逆コンプトン散乱生成X線を露 光しその感度や分解能を測定する予定である。

8. 謝辞

レジスト材へのSR光照射において住友重機械工 業株式会社のAURORA-2Sを使用させていただきま した。加藤隆典博士、青木康博士のご指導と併せて お礼を申し上げます。

参考文献

- [1] D. Ueyama, et al., "リニアック技術研究会論文投稿 要領Proceedings of the 28th Linear Accelerator Meeting in Japan, Tokai, July 30th-Aug 1st, 2004
- [2] M. Yorozu et al., Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 4228-4232 Part1, No.6A, June 20