Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

RF measurement of SDTL cavity

ITO Takashi^{1,A)}, ASANO Hiroyuki^{A)}, MORISHITA Takatoshi^{A)}, KATO Takao^{B)}, TAKASAKI Eiichi^{B)}, TANAKA Hirokazu^{B)}, NAITO Fujio^{B)} ^{A)} Japan Atomic Energy Research Institute Shirakata Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 ^{B)} High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki-ken, 305-0801

Abstract

The Separated type Drift Tube Linac (SDTL) is adopted for 50MeV-191MeV part of high intensity proton linac for Japan Proton Accelerator Research Complex(J-PARC). It consists of independent 32 tanks and the operating frequency is 324MHz. The 32nd tank (186MeV-191MeV) was constructed and low power rf characteristics measurement was done. As a result of the low power test, the resonant frequency was adjusted to 324MHz and the average accelerating field distribution was adjusted within 1%.

SDTL空洞RF測定

1. 概要

日本原子力研究所と高エネルギー加速器研究機構 (KEK)が共同で進めている大強度陽子加速器計画 (J-PARC)では、50MeVから181MeVまでのH-イオン の加速に、分割型ドリフトチューブリニアック (Separated type Drift Tube Linac:以下SDTL) が用いられる。

SDTL部は全32台の空洞から構成され、SDTL32は SDTL最後段の加速空洞であり、現時点で、ドリフト チューブ(DT)・周波数調整用チューナーの取付け などを含めた空洞組立てが終了している。

ここでは、SDTL32の電場分調整など、rf特性測定の結果について報告する。

2.はじめに

図1にJ-PARCリニアック部の概略図を示す。

図1.J-PARCリニアック部の概略図

J-PARCのリニアック部では、3MeVまでの加速に対 しRFQが、3~50MeVまでの加速にはDTLが、そして 50MeV~191MeVまでのビーム加速のためにSDTL空洞 32台が用いられる。その後400MeVまでの加速には環 状結合構造空洞(ACS)が用いられ、ビームライン を通じて3GeVシンクロトロンに入射される[1]。

それぞれのSDTL空洞の間には、ビーム収束用ダブ レット電磁石が配置される。空洞は5セルで構成さ れ、各セル長はビームの加速エネルギーに対応した 長さとなっている。従って、SDTLの空洞長は約1.5m (SDTL1)~約2.5m(SDTL32)とすべて異なってい る。

現在までに、SDTL1からSDTL3の3空洞に対しエー ジングを兼ねた大電力試験が行われ、空洞の高い耐 電力性能を確認している[2]。また、納入されたタ ンクの組立てが順次行われており、SDTL32の試験後 には、それら組立てられた空洞のrf特性の測定が行 われる予定である。

3 . SDTL空洞の構造

SDTL32はSDTL部最後段の加速空洞である。表1に SDTL空洞の主なパラメータを示す。

表1.SDTL32主要パラメータ

空洞内径 空洞長 運転周波数 DT外径(直径) Bore直径 ステム直径 入射エネルギー 出ま	520.2 mm 2559.3 mm 324 MHz 90 mm 34 mm 36 mm 185.9 MeV 190.8 MeV
出射エネルギー	190.8 MeV
平均電場強度	3.7 MV/m
投入電力	900 kW (Peak)

¹ E-mail: itou@linac.tokai.jaeri.go.jp

空洞は中空鍛造の鉄製である。空洞内壁面は周期 反転銅電鋳(PR銅電鋳)により0.5mmの銅の層を 形成させ、機械加工後(内径加工後)に電解研磨に よる仕上げを行っている。端板はSUS製で、空洞部 同様PR銅電鋳が施されている。

真空シールは、耐放射線性を考慮し、DT取付け部 を除きすべて金属シールを用いた。図2にSDTL空洞 概略図を示す。

図2.SDTL空洞概略図

空洞には4個のDT、2台の固定チューナー、1 台の自動チューナー及び1台の入力カプラーが取付 けられる。また、RFピックアップ4箇所及びのぞき 窓3箇所が空洞側面に設けられている。

DT及びハーフドリフトチューブ(HDT)は、ト ランスバース方向50µm以内、加速軸方向100µm以内 の公差で取付けられている。

3.低電力試験

3.1 共振周波数及びQ値

ネットワークアナライザーを用い、組立て後の SDTL32 の共振周波数及びQ値の測定を行った。表 1に計算(設計値)及び測定で求めた空洞共振周波 数及びQ値を示す。

表2.空洞共振周波数及びQ値

	計算値	測定値	
共振周波数[MHz]	323.885	323.573	
Q_0	40100	39200	

共振周波数の違いは、設計値と実機との内径の差、 及び真空(計算値)及び空気中(測定)の誘電率の 違いからきている。また、測定されたQ値は計算値 の97.8%と良好な値である。この値は現在までに完 成しているSDTL1~SDTL3で測定された値と同程度 なので、妥当な値であると言える。

次に各チューナー挿入量と共振周波数のずれの測 定を行った。空洞組立ての際し、チューナーは自動 チューナー1台及び低電力用の可動チューナー2台を 装着してあり、各チューナーは空洞内壁面から 120mm程度挿入可能である。これら3台のチューナー の挿入量を変化させ、共振周波数との差を測定した。 図3にチューナー挿入量と周波数差のグラフを示す。

図3.チューナー挿入量と周波数差 FT1:上流側チューナー FT2:下流側チューナー AT:自動チューナー

チューナの挿入量と周波数差の傾向は、すべての チューナーで一致している。同様に、周波数差も挿 入量120mmに対しおよそ300kHz~350kHzであり、す べてのチューナーでほぼ一定である。

また、空洞の共振周波数はおよそ323.57MHz、 従って、運転中の共振周波数を324MHzに調節するた めにはチューナーを挿入し、300kHzほど周波数を上 げる必要がある。上述の周波数の変化量を考えると、 各チューナには十分周波数調節を行う余裕があると 言える。 Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

3.2 電場分布測定

自励振系を構築し、ビーズ摂動法により加速軸上 の電場分布調整を行った。図4に電場分布測定中の SDTL32の写真を示す。写真は上流側から写したもの である。

空洞には、自動チューナー1台及び低電力用の可 動チューナー2台が装着されており、電場分布調整 にはこれら3台のチューナーを用いる。

図4.SDTL32空洞概観

図5に測定したSDTL32空洞のビーム軸上の電場分 布を示す。左図上段が調整前、下段が調整後のデー タである。横軸は測定点数を表し、縦軸はレファレ ンス信号との周波数差を表す数値である(E²に比 例)。

電場分布のデータから求めた平均電場強度を右図 に示す。横軸がセル、縦軸が電場強度である。調整 前は全幅で±1%以上のばらつきだったものが、調整 後に±1%以内に入っていることが分かる。

調整後の共振周波数は、タンクを真空にした時の 周波数差を考慮しておよそ323.9MHzに調整している。 現在、さらにばらつきを抑えたフラットな電場分布 を得るために、チューナーの調節を行っている。

4. 結論

SDTL32空洞の低電力試験を行った。チューナーを 挿入しない(電場分布の調整を行わない)状態での 共振周波数はおよそ323.57MHzであり、この状態か ら、3台のチューナーを用いて加速軸上の電場分布 の調整及び運転周波数の調整を行った。

その結果、電場分布のばらつきが全幅でおよそ± 1%、共振周波数は323.9MHzという比較的良好な結果 を得た。現在、さらに分布のばらつきを抑えるため に調整を継続中である。

参考文献

- [2] "Accelerator Technical Design Report for J-PARC", KEK Report 2002-13; JAERI-Tech 2003-044.
- [2] 内藤富士夫, et al., "J-PARC用SDTLの大電力試験", Proceedings of the 28th Linear Accelerator Meeting in Japan, Tokai, Jul. 30-Aug. 1, 2003

図5.加速軸上電場分布および平均電場強度