ANALYSIS ON X-BAND STRUCTURE BREAKDOWN AT GLCTA

 $T.Suehara^{1,A)}, T.Sanuki^{A)}, S.Komamiya^{A)}, T.Higo^{B)}, H.Hayano^{B)}, N.Terunuma^{B)}, T.Saeki^{B)}, N.Terunuma^{B}, T.Saeki^{B)}, N.Terunuma^{B}, T.Saeki^{B}, N.Terunuma^{B}, N.Te$

K.Watanabe^{C)}, A.Hayakawa^{D)}, Y.Tsukada^{D)}

^{A)} Dept. of Physics, Graduate School of Science, The University of Tokyo

7-3-1 Hongo, Bunkyo, Tokyo, 133-0033

^{B)} KEK, High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801

^{C)} Course of Applied Physics, Division of Engineering, Tohoku Gakuin University

1-13-1 Chuo, Tagajo, Miyagi, 985-8537

^{D)} Kanto Information Service

8-21 Bunkyo-cho, Tsuchiura, Ibaraki, 300-0045

Abstract

We have built a new monitoring system for accelerator structure breakdowns in the X-band high-gradient test facility at KEK (GLCTA : Global Linear Collider Test Accelerator). An X-band test structure KX01 (made by KEK) has been processed at GLCTA and we have been collecting data for about 3 months using this breakdown monitoring system. We describe overview of the monitoring system and preliminary result of breakdown analysis of the structure.

GLCTAにおけるXバンド加速管放電現象の解析

1. 背景と目的

1.1 GLCとGLCTA

GLC(Global Linear Collider)^{2,[1]}は、重心系エネル ギー1TeVを目指して計画が進められている、次世 代電子陽電子衝突型線形加速器である。GLCの主線 形加速器部においては、TeV領域への加速に必要な 高い電場勾配(>50MV/m)を得るため、X-band (11.424GHz)を加速に用いることが計画されている。

GLCTA^[2,3]は、X-band加速技術の確立・検証のためKEKに設置された高電界試験装置である。現在クライストロン2基の出力を合成し、導波管(WR90)を通して加速管へ高周波電力(パルス幅最大600ns、パワー最大60MW程度、くり返し最大50Hz)を供給している。2004年4月よりKEK製KX01加速管のProcessing及び高電界試験を行っている。^[4]

1.2 加速管の放電現象

高電場による加速管の放電(RF Breakdown)をいか に防ぐかは、加速管開発の最重要のテーマである。 加速管内での放電はビームロスを引き起こし、また 加速管自体にもダメージを与える。

GLCの電場勾配は現存の加速器の2倍近くに達す るため、放電頻度を実用レベルに抑えるためには、 設計・製作上極めて高い技術が必要となる。

X-band加速管は従来型(S-band:2.856GHz)より高い 電場勾配に耐えると考えられている^[5]が、空洞サイ ズが従来の1/4となるためより精密な加工も要求さ れ、放電を抑えるためにはなお技術的な課題が多い。

1.3 放電検出の概要

放電の少ない加速管を製作するためには、加速管 の放電現象を解明し、加速管での実際の放電頻度、 放電位置、強度など、放電の特性をできるだけ詳細 に知り、解析することが必要である。

GLCTAでは、現在、RF・X線・音響の3種類の 放電センサーを加速管周辺に設置している。また新 規に開発した放電モニタシステムを用いて、ソフト ウェアによるオンライン放電検出を行うとともに、 測定データを統合、記録している。本稿では、この 放電検出器・モニタシステムの概要と、放電データ 解析の現状を報告する。

図1:放電モニタシステム概念図 RF、X線、音響の各検出器の信号を CAMAC、VME、オシロスコープに分けて データ取り込み、放電検出・記録を行う。

¹ E-mail: suehara@icepp.s.u-tokyo.ac.jp

² http://lcdev.kek.jp/

2. 放電検出器

2.1入出力・反射RFのパワー・位相検出

加速管で放電が起きると、RFが正常に伝播しな くなるため、加速管からの出力RFパワーが減少し、 反射RFパワーが増大する現象が見られる。この入 出力・反射のRFパワーをモニタすることで、放電 を検知することができる。また、RFパワーの変化 した(パルス内での)時間および反射RFの位相を調べ ることで、放電位置等の特性評価にも役立つ。

これらのRF測定には、加速管の上流、下流の導 波管に設置された方向性結合器(Directional Coupler) を用いる。方向性結合器は、ある方向に進むRFの 出力を選択的に取り出す器具である。方向性結合器 の出力を分岐してパワーと位相に分解し、CAMAC の500MHzフラッシュADCおよび500MHz帯域,1GS/s のオシロスコープに入力して波形を測定している。

現在監視しているRFは、RF源から加速管への入 力、加速管から下流への出力、加速管から上流への 反射の対称成分、反対称成分の4種類である。

2.2 放電X線検出

加速管の放電時には、加速管から大量のX線が放 出される。これは、放電時に加速管内で生成するプ ラズマ状の電子が加速管の壁に衝突するときに発生 すると考えられている。

これを検出するため、鉛でコリメートした直径 3cmのシンチレータに光電子増倍管が接着されたものを加速管の周囲に10基設置し、CAMACのADCおよびTDCでデータ収集を行っている。X線の強度および入射時間のチャンネルごとの違いから、放電位置や強度の特定が可能である。

2.3 音響検出

圧電素子を用いた直径1cm程度の超音波音響セン サーを加速管に直接貼り付けており、これにより放 電に伴う加速管の振動を直接検出している。^[6]

現在、この音響センサーは原則として加速管のセ ルごとに一つ、入出力ポートも含め、計64チャンネ ルが設置されており、放電位置をかなり正確に調べ ることができると考えられる。信号波形の記録は、 VMEの20MHzデジタイザにより行っている。

3. 放電モニタシステム

3.1 データ収集(DAQ)・制御

放電モニタシステムは、主にDAQ、放電検出、 RF/トリガ制御、データ保存の4つの機能を持つ。

DAQは、パルス毎にデータを収集するものと放電 検出後にハードウェア内に蓄えられたデータを取得 するものの二種類ある。放電検出はパルス毎に収集 されたデータを用いて行い、放電が検出されると、 測定トリガ・RF出力を止め、データを保存する。 パルス毎のデータ収集・制御にはCAMACを用い ている。GLCTAの現在のセットアップでは100Hzま での運転が想定されており、1パルスの処理時間は 10ms以内に抑える必要がある。このため、CAMAC のクレートコントローラにはPC一体型のCC/NET³を 用い、また特に取得に時間のかかるRF波形のFlash ADC(500MHz, 8192pts/ch)からの入力に、入力点数 を減らす(現在は1000pts)細工を施し、DAQの高速化 を図っている。現在1パルスあたり8ms程度での処理 を達成している。

VME、オシロスコープのデータは放電検出後に PCのメモリ内に蓄えられたCAMACからのデータと ともに収集・保存される。放電の予兆等を調べるた め、CAMACのRF波形とオシロスコープは500パル ス分、VMEの音響データは3パルス分、放電前にさ かのぼって保存が可能となっている。X線はデータ 量が小さいため全パルス分保存している。

保存されたデータはroot⁴で解析可能な形式になっ ており、また専用のイベントディスプレイおよび ASCIIデータでの解析も可能である。

3.2 放電検出

現在の放電検出は、RF波形およびX線のデータを 用いて行われているが、そのパラメータは入力RF のパワー、パルス幅などによって変える必要がある ため、ネットワークとGUIを通じて動的に変更が可 能になっている。

現在設定が可能なのは、RF波形の各チャンネル に対し、ピーク強度、指定範囲の積分強度および、 それらの1つ前のパルスに対する比に対して、上 限・下限を設定して範囲外なら放電とみなす検出方 法である。X線に関しては、一つ前のパルスとの差 が一定値以上なら放電とみなす設定になっている。

図2: 放電検出パラメータ設定画面(一部) Rangeで指定された時間範囲を積分し、1つ前の パルスとの比が、Lower/Upper Limit(%)で 設定される範囲外ならば放電とみなす。

4. 放電データ解析の現状

4.1 放電イベントの分類

放電モニタシステムにより検出された放電イベン トの中には、加速管以外のRFコンポーネント(導波 管、クライストロン等)で起きた放電等も含まれる。 これらのイベントを分離するには、1つは加速管で の放電では入力RF波形に乱れが少ないことを利用 できる。ただ導波管と加速管での同時放電等も考え られ、他の基準との複合的な判定が必要である。

³ http://www-online.kek.jp/~inoue/Parallel-CAMAC/
⁴ http://root.cern.ch/

Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

図3:典型的な放電イベント

Input port周辺の放電(上段)ではOutput port周辺(中段)に比べRF反射の応答が早く、音響信号もInput port側に 集中している。下段は導波管での放電で、入力RFに乱れが現れ、X線、音響検出器は反応していない。

ソフトウェアによるイベントの自動分類は開発中 であり、現在はイベントディスプレイを用いて手動 で分類を行っている。

4.2 加速管の放電頻度

放電頻度は、加速管の性能を決める重要な指標だ が、放電の定義や運転による特性変化(プロセシン グ・長期運転による劣化)等の影響が大きく、検出 された放電回数のみから単純に評価はできない。

現在、今までの運転で得られたデータを元に、放 電頻度の経時変化、入力パワー等に対する依存性等、 解析が進められている。

4.3 放電位置、時間の特定

放電位置、時間は、RF波形、X線、音響の各検出 器で独立に行うことができる。図3に示したように、 大まかな放電位置については、各検出器で一貫した 結果を得られるものの、詳細な放電位置については、 放電のメカニズムが完全に理解されていないことも あり、データを蓄積し、解析方法を確立していく必 要がある。

5. 今後の予定

検出器については、X線センサー、音響センサー ともに、正確な校正を行い、チャンネル毎の感度の 違いを補正する必要がある。また、ビームラインの 電流モニタ等の新たな検出器の設置も検討する。

放電特性の統計的な解析方法はまだ開発途上であ

る。今後データを蓄積していく中で、各種パラメー タの依存性などを解明し、精度の高い放電位置、時 間、強度の検知を目指す。

また、加速管の放電特性の運転による変化を調べるとともに、放電の時間的な局在、放電の予兆等についても解析を行い、加速器の運転技術等に対する 研究も進める予定である。

6. 謝辞

音響検出器は、センサー、VMEモジュールとも SLACにて開発されたものを提供していただきました。SLAC/NLCTAグループの協力に感謝します。

参考文献

- [1] ACFA,JHEPC,KEK "GLC Project Report", URL: http://lcdev.kek.jp/ProjReport/
- [2] 肥後寿泰 et al., "GLC XバンドRFシステム開発の現状", Proceedings of the 28th Linear Accelerator Meeting in Japan, URL: http://lam28.tokai.jaeri.go.jp/
- [3] 浦川順治, "ATF/GLC開発", Proceedings of the 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, URL: http://conference.kek.jp/sast03/
- [4] K.Watanabe et al., "X-band Accelerating Structure High Gredient Test at GLCTA", This proceedings
- [5] P.B.Wilson, "Linear Accelerators for TeV Colliders", SLAC-PUB3674,URL: http://www.slac.stanford.edu/pubs/
- [6] J.Nelson et al., "Use of Acoustic Emission to Diagnose Breakdown in Accelerator RF Structures", Proceedings of the 2003 Particle Accelerator Conference URL: http://epaper.kek.jp/jacow/proceedings.htm