Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

GLCTA Control System

N.Terunuma^{1,A)}, H.Hayano^{A)}, T.Higo^{A)}, T.Saeki^{A)}, T.Suehara^{B)} K.Watanabe^{C)} ^{A)} High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki, 305-0081 ^{B)} University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 ^{C)} Tohoku Gakuin University 1-13-1 Chuo, Tagajo, Miyagi, 985-8537

Abstract

Research and development for the high power X-band RF technologies have been performed on the GLC Test Accelerator, GLCTA, since fall of 2003. The control system of this facility is based on the PC-Linux servers that handle the CAMAC, VME and PLC modules. Automated RF processing and data accumulation of the RF breakdown have been performed.

GLCTA計算機制御システム

1. はじめに

KEKではアッセンブリホールにGLC試験加速器施設 (GLCTA)⁽¹⁾を建設し、昨年秋から開発運転を始めた。 この施設は、KEKで開発中のX-band RFシステム用の 総合試験設備であり、安定な高電界加速場の実現の ための技術開発が目的である。そのために加速管を 含めたRFシステムでの放電現象の解析を行い、新た な設計に反映させることが必須である。また、次々 と改良され製造されてくるクライストロンや加速管 などのRFユニットを効率よく立ち上げ試験すること が必要であり^[2]、その支援環境の構築もGLCTA制御シ ステムに求められていることである。

システムの構築に当たってはコストパフォーマン スの点からPC-Linuxを採用することを基本とした。 作業は試験加速器(ATF)のメンバーが運転と平行し て進めることになる。従って、ATFでのソフトウェ アー資産を最大限に利用して効率を上げることにな る。さらに、既存の機器資産の有効利用とそれに関 わる豊富な経験を踏まえてCAMACシステムを基幹 に使用することで初期システムの構築を迅速に行う ことになった。

本発表ではGLCTA制御システムの概要を報告する。

2. 機器の構成

GLCTAのRFシステムは使用目的で大きく2系統 に分けられる。一つは昨年秋から運転されているも ので、加速管の高電界試験用のシステム(Station 1&2)であり^[3]、ソレノイド型クライストロンを2台 使用し、それらの出力を合成し加速管へ供給してい る。もう一つはPPM型クライストロンなど開発中の 装置の試験に使用されるシステム(Station 3&4)であ り^[4]、本年4月より立ち上げ運転を始めた^[5]。

2.1 RFシステム制御機器

高電界試験用のシステムは、数年間AR南実験室 でX-band RF源の開発で使用されたものを移設した ものであり、2つのクライストロンを共通のDC電 源に繋がったそれぞれのモジュレーターが駆動する 形式になっている。モジュレータ、クライストロン および真空度などシステムに必要なものは全て CAMAC機器を通して計算機制御される。クライス トロンRF出力および波形モニター用のオシロスコー プのトリガーはCAMACのパルスゲートモジュール (CSY)を通して計算機で管理され、必要な波形を確 実に記録できるように組み込まれている^[6]。

もう一方のPPM型クライストロンに使用されてい るシステムは、昨年度製造されたものでありKEK-B 入射器のものと同様にPLCがモジュレータを制御し、 上位計算機はPLCと直接通信を行う形式である。ク ライストロンの制御は高電界試験用と同様で CAMAC機器を通して行っている。

2.1 計算機ネットワーク

計算機群の構成を図1に示す。場所の離れた3系 統のCAMACを制御するために、それぞれの場所に ラックマウント型のPC (Celeron 1.4 GHz)を配置して いる。これらはアセンブリホールの環境に耐えられ るように空冷機能を強化したものを採用した。 CAMACインターフェイスは東陽テクニカ製cc7700 およびCC/NET^[7]を使用している。

制御システムの中心にはPCサーバー(Zeon dual 2.8 GHz)を置き、前述のCAMACサーバー3台と制御端 末(Pentium 2.8 GHz) 4台をSwitching hubで接続して いる。さらに、4台のオシロスコープ、PLCおよ びVME controllerがイーサネットで接続されている。

¹ E-mail: nobuhiro.terunuma@kek.jp

図1:GLCTA制御機器の構成

3. ソフトウェアー構成

計算機のOSはLinuxである。CC/NETおよびVME コントローラーにもLinuxを採用し、システム全体 に渡り共通した柔軟なプログラム開発環境を実現し ている。

CAMACを制御する3台のサーバー計算機は基本 的に独立してそれぞれの装置、つまりRFシステム (station 1&2, 3&4)そしてRF breakdown検出システム の制御が可能である。従って、ハードウェアーまた はソフトウェアーの変更作業は他の制御系に干渉な く行うことができる。もちろん 将来的に要求され るであろうGLCTAシステム全体の統括的制御も可能 である。

3.1 RFシステム制御

計算機内での基本的なプロセス構成をRF Station 1&2を例にして図2に示す (Station 3&4については CAMACをPLCにし、その通信をTCP/IP 経由に読み 替えればよい)。機器のMonitorとControlのプロセ スは独立である。これによりRF up/downの様に比較 的ハードウェアーの動作時間が必要な処理をしてい る間でも、モニタープロセスが高速にデータを収集 し、ユーザー側に転送することができる。Logging プロセスは収集されたデータを一定時間(現在の設 定は一秒)ごとにsamplingしてハードディスクに記 録する。この際、約3時間分の履歴データをメモ リー上に保持することで記録したデータの再読込を 少なくし、それを表示するユーザーインターフェイ スの待ち時間を短縮化した。これらのプロセスは Linuxのshared memoryをデーターベース的に使用す ることで制御データを共有している。また、命令の 受け渡しは同じくLinuxのmessage queueサービスを使 用することで要求応答の同期を保証している。

3.2 RF Processing

GLCTAでの試験を効率良く行うためには自動化されたRF Processingが必須である。基本の動作ロジックは簡単で、「RFが落ちたら然るべき復帰処理を行い、真空度を含め機器の状態をチェックし、その後徐々に目標値まで出力を上げ保持する」ことを繰り

図2:RFシステム制御プロセス構成

返す。RF Processingのプロセス自身は動作の高速性 を考慮してC言語で作成され、CAMACサーバー上 でbackground jobとして起動されている。制御パネル のプロセスとは独立である。

制御パネルはユーザー端末用計算機上で起動される。CAMACサーバー上には、これと対になるプロセスがあり、TCP/IP socketを利用して通信している。 運用上、多少問題はあるが、複数同時に別の場所で立ち上げモニターすることが可能である。プログラム言語は、ユーザーの計算機環境の違いによる影響が少なくなること、簡単にGraphical Interfaceが作成できることを考慮してJavaを採用した。

また構成上、仮にユーザー側の制御パネルが deadlockしてもCAMACサーバー上のRF processingプ ロセス本体に影響が出ることは無い。図3にRF station 1&2用のProcessing制御パネルを示す。

3.3 RF breakdown検出システム

X-band RFシステムの開発で必要とされる重要な テーマの一つは「RF breakdownを検出して原因を調 査し、安定なRFシステムの設計にフィードバックす Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

図3: RF Processing制御パネル

る」ことである。この機能の実現は様々なRFモニ ター信号波形を読み取り、異変を検出することから 始まる。

Breakdown検出システムは現在のところ加速管の高 電界試験(station 1&2)にのみ構築されている。現段 階でのRFパルスの繰り返しは50 Hzであるが、近い 将来に100 Hzでの運転に移行する。

Breakdownの検出は各々のRFパルスごとに500 MHz FADC (CAMAC)で読み取った波形を計算機で 解析することで行われる。同時に計算機は波形の異 変を検出した際にオシロスコープとRF出力のトリ ガーをCAMACモジュールを通して即座に停止し、 データの更新を確実に止める。FADCは4ch分用意さ れており、100 Hzでの異変検出は問題なく動作でき る。オシロスコープはRing buffer memoryを持つもの (横河DL7420)を使用し、8chの信号を異変までの

500パルス分記録する。計算機はトリガーを停止させた後にオシロスコープを含め関係する全てのデータを収集し、イベントことに整理保存する。

また、このBreakdown検出システムは前述したRF Processingシステムと連携しており、お互いの同期を とりながら連続して運転とデータ収集を継続する。

3.4 記録データの表示

Loggingプロセスで保存された機器のデータおよ びBreakdown検出システムで保存された波形データは、 それぞれ履歴表示ツールを使用して内容の確認、 ユーザーが自由に解析できるようにASCII形式で保 存することができる。表示ツールはユーザー環境で の利便性を考慮しJavaで構築されている。このツー ルとシステムで保存されたデータのコピーがあれば、 GLCTA制御システムとは独立に、データの読み取り、 表示、ユーザーの使い慣れたアプリケーションでの 解析ができる。

4. 今後の展望

GLCTA 制御システムの重要な役割である Breakdown検出システムをPPM型クライストロン開 発スタンドへ展開することは重要であるが、残念な ことに500 MHz FADCは部品が製造中止であり予備 もない。これは加速管開発で使用しているFADCが 故障しても直せないことも意味している。そこで現 在、検出の心臓部であるFADCに取って代わるもの としてCompact PCIベースの1 GHz sampling Transient Recorderを検討している。これによりRF station 3&4 への拡張が可能となり、加えてCAMACでは不可能 な繰り返し150 Hzに対応することができると期待し ている。

GLCTA制御システムは初期の要求を迅速に満たす べくLinuxとCAMACを中心に整備されてきた。今後 は試験すべきX-bandデバイスの増加と共に測定数の 増加と精度の向上を考慮し対応していくことになろ う。また、将来ATFで生成した超低エミッタンスマ ルチバンチビームを使ったX-bandシステムでの加速 試験も検討されており、ATF制御システムとの接続 を想定して作業していくことになる。

参考文献

- [1] GLCTA, http://lcdev.kek.jp
- [2] S.Fukuda, et al., "R&D Plan of RF Source in KEK GLCTA", 本年会ポスター[19].
- [3] K.Watanabe, et al., "X-band Accelerating Structure High Gredient Test at GLCTA", 本年会ポスター[219].
- [4] T.Saeki, et al., "The PPM klystron operation in GLCTA", 本年会ポスター[154].
- [5] M.Akemoto, et al., "Pulse modulator for X-band Klystron at GLCTA", 本年会ポスター[1].
- [6] T.Suehara, et al., "Analysis on X-band structure breakdown at GLCTA", 本年会ポスター[172]
- [7] CC/NET, http://www.toyo.co.jp/daq/