Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

DEVELOPMENT OF A 972MHz CIRCURATOR FOR THE J-PARC LINAC ()

Kazuaki Suganuma^{1,A)}, Shozo Anami^{B)}, Etsuji Chishiro^{A)}, Chikashi Kubota^{B)}, Kibatsu Shinohara^{C)}, Shigetugu Tsuruoka^{C)}, Seiya Yamaguchi^{B)}

A) Japan Atomic Energy Research Institute (JAERI)

2-4 Shirakata, Shirane, Tokai, Ibaraki, 319-1195 JAPAN

^{B)} High Energy Accelerator Research Organization (KEK)

1-1 Oho, Tsukuba, Ibaraki, 305-0801 JAPAN

^{C)} Nihon Koshuha Co.,LTD.

1119 Nakayama, Midori, Yokohama, Kanagawa, 226-0011 JAPAN

Abstract

A 972 MHz circulator is currently under developed. In the high-power test of the prototype, rf breakdown was observed at the matching post. Rf characteristics obtained by simulations and low-power tests will be presented.

J-PARCリニアック用972MHzサーキュレーターの開発()

1.はじめに

J-PARCプロジェクト^[1]のリニアック^[2]は、負水 素イオンのエネルギーが約200MeVから約400MeVで 常伝導加速空洞を、約400MeVから約600MeVで超伝 導加速空洞を選択している。それぞれの加速空洞 に加速電場を供給する高周波源の周波数として 972MHzを採用し、J-PARCのRFグループでは、これ ら高周波源の機器の開発とシステム設計を進めて いる。これら機器の一つに、加速空洞で反射する 高周波電力からクライストロンを保護するため サーキュレーターがある。表1に2つの加速空洞 とクライストロンからの仕様と972MHz用サーキュ レーターの仕様を記す。平成14年度に972MHzサー キュレーターの製作をおこない、平成15年秋まで テストスタンドに用いてきたが、整合をとるため のポスト付近で放電が起こり電力通過の問題と なっている。今回、汎用の電磁場解析ソフト (HFSSとMaxwell 3D)を使ってサーキュレーターの 計算をおこなった。また、いくつかのRF特性を 測定したので報告する。

2. 電磁場解析ソフトによる計算

2.1 972MHzサーキュレーターの計算値と測定値

前回のリニアック研究会で、J-PARCリニアック における324MHz立体回路システムの機器について 汎用電磁場解析ソフトを使った計算値と製作した 機器の測定値が、ほぼ一致することを報告^[3]して いるので参照願いたい。図1に972MHz用サーキュ レーターの入力モデルを示し、図2に972MHzサー

		常伝導空洞	超伝導空洞
周波数	MHz	972	
周波数帯域	MHz	±5	± 1
出力	MW	3	0.3 (max 3)
挿入損失	dB	<0.2	
分離度	dB	>25	
VSWR		<1.15	
平均電力	k₩	120	-
			600
パルス幅	μS	800	or
			3000-5000
繰り返し	pps	50	50
導波管サイズ		WR975	
冷却水温度		27 ± 1	
冷却水流量	l/min	40	

表1 972MHzサーキュレーターと各空洞の仕様.

¹ E-mail: suganuma@linac.tokai.jaeri.go.jp

キュレーターのSパラメーター計算値と測定値を 示す。また、図3にx-y平面での3MW入力時の電場強 度分布を示す。972MHzサーキュレーターの反射損 失や挿入損失の数値に多少違いが見られる。詳細 は今後計算を進めて検討し報告したい。

図1 972MHzサーキュレーターの入力モデル.

図2 972MHzサーキュレーターの Sパラメーターの計算値と測定値.

図3 972MHzサーキュレーターの電場分布.

2.2 ポスト付近の電界集中

実際にサーキュレーターで放電が起きたポスト 付近の電界強度分布を表示した。図4に電磁場解 析ソフトによる972MHzサーキュレーターの計算値 のポスト付近の電界強度のx-z平面の分布を示す。 RF入口にある4つのポストの内の右下の手前側で 電界が高い部分を見る事ができる。

図4 ポスト付近の電界集中の様子.

2. 冷却水温度依存性

972MHzサーキュレーターの冷却水温度を変化さ せ、反射損失、挿入損失、方向性の測定をおこ なった。具体的には、冷却水出口配管に熱伝対を 貼りつけ、温度が可変できるチラーを使い、5 間隔でRF特性を測定した。図5に冷却水温度と RF特性の関係を示す。

図5 冷却水温度とRF特性の関係.

図6に冷却水温度を変化させた時の反射損失と 方向性の20dBでの周波数帯域の関係を示す。冷却 水温度が45 あたりから周波数帯域が狭くなるの がわかった。

図6 冷却水温度と周波数帯域の関係.

3.磁場分布の測定

つぎに、972MHzサーキュレーターの任意の点で 磁束密度の測定をおこない、グラフに整理した。 また、電磁場解析ソフトの計算値の磁場分布と照 らし合わせた。図7にサーキュレーターの磁束密 度の測定値と計算値を示す。磁場分布の測定値と 計算値が一致しないが、詳細は今後、測定と計算 を進めて検討し報告したい。

導波管中心からの距離(mm) 図7 磁場分布の計算値と測定値.

4.フェライトの誘電率の測定

972MHzサーキュレーターに使用している、フェ

ライトの誘電率とtan を測定した。図8に周波数 と比誘電率、周波数とtan の関係を示す。製造会 社の成績書では比誘電率が14.81で測定値とほぼ 一致した値が得られている。

図8 周波数と比誘電率,tan の関係.

5.まとめ

J-PARCリニアックにおける972MHzサーキュレー ターについて、汎用電磁場解析ソフトを使った計 算の現状と、いくつかの測定値について報告した。 既存のサーキュレーターは、ポスト付近で電界が 集中し放電が起きている。電界の高い部分を、汎 用の電磁場解析ソフトを使った計算で再現するこ とができた。また、冷却水温度の変化によるRF 特性の変化を測定することで冷却水温度とRF特 性の関係を明らかにした。今後は放電後にポスト の改善をおこなったので、ポスト改善後の大電力 試験をおこなう予定である。

謝辞

比誘電率の測定では三菱重工(株)の五十嵐康 仁氏に協力頂きました。お礼申し上げます。

参考文献

- Y Yamazaki, "The JAERI-KEK Joint Project for The High-Intensity Proton Accelerator, J-PARC", PAC2003, Portland (2003), (URL:<u>http://www.conf.slac.st</u> anford.edu/pac03/)
- [2] High-Intensity Proton Accelerator Project Team, "Accelerater Technical Design Report for High-Intensity Proton Accelerator Facility Project, J PARC "JAERI-Tech 2003-044,KEK Report 2002-13.
- [3] 菅沼和明他, "J-PARCリニアック立体回路シス テムの設計と調整"第28回リニアック技術研 究会.