AN INVESTIGATION OF FIREPROOFING AND AIRTIGHT FOR FLOOR OPENINGS IN J-PARC LINAC BUILDING

Kazuaki Suganuma^{1,A)}, Shozo Anami^{B)}, Etsuji Chishiro^{A)}, Joichi Kusano^{A)}, Nobuo Ouchi^{A)}, Seiya Yamaguchi^{B)}

A) Japan Atomic Energy Research Institute (JAERI)

2-4 Shirakata, Shirane, Tokai, Ibaraki, 319-1195 JAPAN

^{B)} High Energy Accelerator Research Organization (KEK)
 1-1 Oho, Tsukuba, Ibaraki, 305-0801 JAPAN

Abstract

Considerations have been given to the airtight and fireproofing for floor openings in JPARC Linac building where cables , waveguides , and coaxial waveguides will penetrate. It was decided to adopt the fireproof block method for fire proofing, and to use a two-component liquid sealant for airtight. From measurement of leak rate for the proposed method for airtight , it was shown that the method has enough margin compared with acceptable leak rate.

J-PARCリニアックにおける リニアック棟床開口の防火処理と気密処理に関する検討

1.はじめに

一般に建家では、火災の拡大、延焼を防止する ため、建築基準法や消防法に定められた防火処理 を区画貫通する開口部に施さなければならない。 また、加速器建家では、作業員を放射線から防護 するため、高エネルギー粒子のふるまいによる空 気の放射能汚染を広げない気密処理が、放射線障 害防止上必要となる。J-PARCプロジェクトのリニ アックは今秋(H16年度)リニアック棟の竣工を予

定している。リニアック棟におけるケーブルおよ び導波管・同軸管を敷設するための床貫通口の防 火と気密の処理について検討をおこなった。図1 にリニアック棟断面の概念図を示す。図1でA区 画は地上にありクライストロンや、高周波立体回 路を設置する。放射線管理区域ではあるが、クラ イストロンからの制動X線が主で比較的緩やかな 放射線管理となっている。一方、B区画とC区画は 放射線を遮蔽しやすい地下トンネル構造となって いる。具体的にはC区画には加速空洞を設置し、 荷電粒子の加速時には空気の放射能汚染があり、 立ち入りが制限される。B区画は、貫通口をクラ ンク構造とすることで、放射線が区画貫通口を通 して、C区画からA区画へ直接通り抜け出来ない遮 蔽の役割をしている。また、B区画は2mm水柱の負 圧となっている。建家構造から防火処理は図に示 す の場所で、気密処理は の場所でおこなうこ ととした。

2.防火処理工法の検討

表1に防火処理と気密処理の各工法の特徴を示 す。表で、BCJ(The Building Center of Japan) は(財)日本建築センターの名称であるが、一般 にケイ酸カルシウム板と不燃パテを使った防火工 法がこの名で呼ばれている。J-PARCリニアックで は、防火処理の工法として、 国土交通大臣認定 の工法、 コストが安い、 ケーブルの追加が容 易である、 ある程度気密が保持できる、を採用 の基準とし工法を検討した。耐火ブロック方式、 MCT方式(Multi Cable Transit)、BCJ方式は国土 交通大臣認定の工法であり、この中から、認定工

¹ E-mail: suganuma@linac.tokai.jaeri.go.jp

法で作業性がよく、低価格でケーブルの追加が容 易な耐火ブロックに追加で不燃パテを併用した工 法で防火処理をおこなうこととした。

表1 防火処理と気密処理の各工法の特徴.							
	防火	気密	ケーブルの 追加	価格			
MCT				×			
BCJ			×				
耐火ブロック		×					
耐火ブロック+パテ							
2液混合シール剤	x						

3.気密処理工法に関する検討

つぎに、気密処理工法であるが、表1の中でMCT は耐火ブロックをケーブルの鉛直方向にネジでか しめ、シール材を表面に塗ることで気密性能を高 めている。2液混合シール剤は貫通口とケーブル の間に混合剤を流し込み硬化させることで気密性 を高めている。BCJは不燃パテが気密保持の役目 を兼ねている。

3.1 気密処理に関する実験的検討

各気密工法の中で、気密性能が良いと思われた MCT工法と2液混合のシール剤工法について、漏 れの目視による確認と漏洩率の測定をおこなった。 試験の概略図を図2に、それぞれの試験体の詳細 を表2に示す。厚さ100mmの軽量発砲コンクリート に試験体を取りつけ、幅700mm×奥行き400mm×高 さ700mmの鉄箱と軽量発泡コンクリートの間にゴ ムシートを挟み、ネジ止めしている。軽量発砲コ ンクリート表面には空気の透過を防止するためシ リコンシールを全面に塗布した。

漏れの目視確認では、加圧し、石鹸水に似た市 販のリークチェッカーを使って試験体全体にスプ レーし、漏れの有無を確認した。漏れがある場合、 気泡となって表面に現れるので漏れの有無を確認 できる。漏れの確認を実施したところ、2液混合 のシール剤工法では、軽量発砲コンクリート開口 部の壁面とシール剤が隣り合う界面の一部から漏 れが認められた。MCT工法では各ケーブル保持用 ブロック間に挟まれた金属プレートの一部と、開 口部周辺の壁面の一部から漏れが認められた。両 工法ともケーブルのシールからは漏れはなかった。 つぎに、漏洩率測定での時間と圧力の関係を図3 に示す。2液混合シール剤工法とMCT工法につい て、漏洩率の測定結果から、両工法とも圧力は指 数関数的に減少していることがわかった。その式 は、

ここで は緩和時間で、両工法ともに約30分で あった。したがって、単位時間での差圧の減少は、 以下のように書ける。

(P) =
$$P_0 - P_t$$

= $P_0 - P_0 e^{-t/}$
 $P_0[1-(1-t/)](緩和時間は十分長い)$
= $P_0 t/$. (2)

したがって、単位時間での容器内空気の質量(M) の減少(M)は、以下のようになる。ここで、空 気は理想気体とする。

$$M = M_{o} - M_{t}$$

= mV(P_{o}-P_{t})/(RT)
= mV (P)/(RT)
= mV P_{o} t/(RT). (3)

ここで、m:空気の平均分子量、R:気体定数、T:絶 対温度、V:容器の体積(1.96×105cm³)である。単

	衣2 供試体の計細				
工法	2 液混合シール剤	MCT			
開口部寸法	120 × 23	0mm			
ケーブル	C V V2×20 4本(22)				
	<u>A C バス0.4 × 1</u> 2	<u>2 P 4本(8)</u>			
使用部材	気密材支持金具	R G B - 6			
	けい酸カルシウム板				

併封体の詳細

位時間に容器から外部へ流出した空気の体積(V)は、状態方程式および(3)式より、次式で与え られる。

$$V = MRT/mP$$

= $P_0V t/P$ (4)
したがって、空気の漏洩率(V/ t)は、

$$V/t = P_0 V/P$$
 (5)

となる。これより、差圧 P₀が2mm(水柱)の場 合、漏洩率は、0.022[cm³/s]となる。 供試体の開口部の面積は、23cm×12cm=0.0276m²で あるが、実際の開口部の面積はおおよそ50cm× 100cm=0.5m²である。空気の漏洩率が開口部の面 積に比例すると仮定すると、1開口部当たりの漏 洩率は、0.022×(0.5/0.0276)=0.40cm³/sとなる。

3.2 漏洩率の限度

ー般に、室内において有害なガスが発生する場合、これを排除するのに必要な換気量は次式で表される^[1]。ただし、有害ガスは室内に一様に拡散しているものとする。

いま、加速器トンネルにおける放射性物質の発 生量をA[Bq/m³]、加速器トンネルから中間トンネ ルへの漏洩率をB[m³/h]とすると、(6)式のガス発 生量に相当する量は、A B[Bq/h]となる。よって、 室内放射物質濃度は、以下のようになる。

$$C = A B/D$$
(7)

ここで、 C:室内放射物質濃度[Bq/m³] A B:放射物質発生量[Bq/h] D:換気量[m³/h] ビーム損失を0.1W/mと仮定して、400MeVのビー

ムをL3BTまで輸送し20日間運転した場合の加速

器トンネル内の放射性物質発生量(運転停止直後)は、J-PARC安全グループによって計算されている^[2]。表3に放射性物質漏洩率の限度の計算を示す。ここで、発生量は、0~200MeVの値と、200~400MeVの値の相加平均とした。また、換気量は4150[m³/h]である。排気中の放射性物質濃度限度は、複数の核種がある場合には各核種ごとに指定された限度^[3]に対する割合の和が1を超えないことが排気可能条件であるが、ここでは割合の和が0.5を超えないことを条件に、(7)式よりBの値を求めた。その結果、漏洩率を4720cm³/s以下にすれば割合の和を0.5以下にすることができる。

3.3 漏洩率の評価

中間トンネル床開口部の寸法すべてが50cm×100cm で、個数が100であると仮定すると、前項で求め た漏洩率の限度を100で割って、47cm³/sという値が 1開口部当たりの漏洩率の限度となる。3章1項で 述べたように測定結果から求めた1開口部当たり の漏洩率は0.4cm³/sであったから、限度に対して2 桁の余裕がある。

4.まとめ

J-PARCリニアックにおける床開口部の防火処理と 気密処理について検討をおこなった。防火処理は 耐火ブロックを用いた工法を、気密処理は2液混 合剤を用いた工法を採用する。供試体を用いた気 密性の試験を行なった結果、トンネル内の空気中 放射性同位元素から算出される許容漏洩率に対し 十分余裕があることがわかった。

参考文献

- [1] 例えば、林 太郎(編)「排気・集じんシス テム」,朝倉書店(1973),p.97.
- [2] 中根佳弘, 私信.
- [3] 科学技術庁告示第5号(平成12年10月23日)
 「放射線を放出する同位元素の数量等を定める件」別表第1および第2.

	核種	半減期	発生量	発生量	発生量	漏洩率	中間トンネル濃度	排気中濃度限度	割合
			0-200 MeV	200-400 MeV	平均				
			Bq/cc	Bq/cc	Bq/cc	cc/s	Bq/cc	Bq/cc	
1	H-3	12.33 y	1.20E-04	1.51E-04	1.36E-04	4720	5.56E-07	3.00E-03	1.85E-04
2	Be-7	53.29 d	8.74E-04	5.69E-04	7.21E-04	4720	2.96E-06	2.00E-03	1.48E-03
3	Be-11	13.81 s	1.22E-04	1.35E-04	1.28E-04	4720	5.27E-07	1.00E-04	5.27E-03
4	C-10	19.255 s	5.88E-04	2.42E-04	4.15E-04	4720	1.70E-06	4.00E-06	4.26E-03
5	C-11	20.39 m	1.16E-02	3.71E-03	7.67E-03	4720	3.15E-05	7.00E-04	4.50E-02
6	C-14	5730 y	2.42E-05	5.80E-05	4.11E-05	4720	1.69E-07	2.00E-02	8.44E-06
7	C-15	2.449 s	8.21E-05	9.36E-05	8.78E-05	4720	3.60E-07	1.00E-04	3.60E-03
8	N-13	9.965 m	1.51E-02	1.60E-02	1.55E-02	4720	6.38E-05	7.00E-04	9.11E-02
9	N-16	7.13 s	4.84E-03	6.03E-03	5.43E-03	4720	2.23E-05	1.00E-04	2.23E-01
10	0-14	70.606 s	5.18E-03	2.75E-04	2.73E-03	4720	1.12E-05	2.00E-04	5.59E-02
11	0-15	122.24 s	3.51E-03	3.46E-03	3.49E-03	4720	1.43E-05	7.00E-04	2.04E-02
12	Ar-37	35.04 d	3.95E-05	9.49E+05	6.72E-05	4720	2.76E-07	7.00E+02	3.94E-10
13	Ar-41	109.34 m	3.53E-03	8.48E-03	6.00E-03	4720	2.46E-05	5.00E-05	4.93E-02

表3 放射性物質漏洩率の限度の計算.

割合の和 5.00E-0.1