PRESENT STATUS OF THE PARAMETRIC X-RAY GENERATOR AT LEBRA

Y. Hayakawa^{*} ^{A)}, I. Sato^{A)}, K. Hayakawa^{A)}, T. Tanaka^{A)}, K. Yokoyama^{A)}, T. Kuwada^{A)}, A. Mori^{A)}, K. Nogami^{A)}, T. Sakai^{B)}, K. Kanno^{B)}, K. Ishiwata^{B)}, K. Nakao^{B)}

A)Institute of Quantum Science, Nihon University 7-24-1 Narashinodai, Funabashi, 274-8501

^{B)}College of Science and Technology, Nihon University 7-24-1 Narashinodai, Funabashi, 274-8501

Abstract

A new X-ray generator based on a 125 MeV electron linac and parametric X-ray radiation (PXR) has been developed at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. In April 2004 the first observation of X-rays from this device has succeeded. After that several experiments of the X-ray imaging have been performed as the demonstration. The result indicates the X-rays from the PXR generator has a unique wavelength gradation and a small angular divergence.

日大パラメトリックX線源の現状

1. はじめに

日大電子線利用研究施設 (LEBRA) では自由電子 レーザ (FEL) 用 125 MeV 電子線形加速器をベースと した X 線源の開発を計画し, X 線生成のプロセスとし てパラメトリック X 線放射 (PXR) と呼ばれる現象を 採用した^[1]。2000 年度からスタートした学術フロン ティア推進事業の一環として設計・建設を進め, 2001 年に PXR 発生装置と専用のビームラインが完成した。 このシステムは真空層に収められた2台のゴニオメー タで制御される2つの Si 単結晶で構成され, X 線取 り出しポートを固定したまま連続的に X 線のエネル ギーを変えることができる^[2,3]。(図 1)

真空チェックや試験運転を行ったが, FEL ビームラ インについての遮蔽や管理区域設定の変更申請が行 われたために,本格的な運用開始は施設検査合格まで 見合わせることとなった。2003年に PXR 用ビームラ インの変更申請を行い,2004年3月に検査合格となっ た。現在の PXR ビームラインでの電子ビームの仕様 (現在の申請値)は表1のようになっている。アナラ イザーでのスリットが固定であるため,エネルギー分 散は変えられないが,それ以外は FEL ビームライン とほぼ同じである。現在,ストレートライン 100 mA, 90° 偏向後 90 mA のビームカレントを達成している。

表 1: PXR ビームラインにおける電子ビームの仕様

加速周波数	2856 MHz
最大電子エネルギー	100 MeV
エネルギー分散	1 %
ビーム電流	100 mA
マクロパルス幅	$20~\mu m s$
繰り返し	2.5 Hz
平均電流	$5 \mu \mathrm{A}$
規格化エミッタンス	$< 20\pi$ mm mrad

*E-mail: yahayak@lebra.nihon-u.ac.jp

試験運転中にターゲットとして用いていた Si 結晶ウ ェハーに損傷が生じるなどの問題が発生したが、2004 年4月に電離箱を用いた PXR の観測に成功した。そ の後に行った X線イメージングの結果と共に、現状を 報告する。

2. ターゲット結晶の損傷

電子ビームを照射されるターゲット結晶はX線の ラジエーターであり、このシステムの基本となるも のであるため、その耐久性は重要である。しかしなが ら,電子ビームの照射による結晶の損傷が確認された。 図2は損傷部分の拡大写真である。 横一列にならん でいるのは、ゴニオステージがモータドライブで退避 している時に電子ビームのマクロパルス毎にダメー ジを受けたためと考えられる。スポットの拡大写真 からは、損傷はビームバンチ毎に起こっているように も見える。当初は熱的な問題を危惧していたが,電場 による破壊の方がより深刻な問題であることがこの 結果からわかる。ビームの電荷密度には制約がある と思われるが、ターゲット結晶交換以後はこの現象は 再現されておらず、結晶の破壊を引き起こす条件はか なり限定的で、ある閾値を超えないと発生しないと思 われる。

3. PXR の初観測とX 線イメージング

現在は PXR 発生システムとして Si(111)-Si(111)の 組み合わせを用いている。PXR 発生の確認は、X 線 出力ポートの直後に置かれた電離箱をモニターする ことで行われた。Bragg 角 12°付近で、反射鏡である 第2結晶の回転角をスキャニングすると電離箱の出 力に明確なピークが認められた。この時と同じ条件 で後日測定されたのが図3である。ピークの幅は理 論計算と比べるとやや広いがほぼ同程度であり、観測 されたシグナルが PXR によるものであることを示し ている^[4]。

Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

図 1: PXR 用ビームライン。

図 2: ターゲット Si 結晶が受けたダメージ。

図 3: 第2結晶回転角度に対すする PXR 強度の依存 性この条件でのX線のエネルギーは9.1 keV である。

また, ポラロイドフィルムやイメージングプレート(IP)によるX線透過画像を取ることにも成功した。 図4はその典型的な例である。現在のところ,7keVから18keVの範囲でのイメージングに成功している。 エッジが非常に鮮明であり,この線源が指向性と単色性について優れていることを示唆している。

本来, PXR のプロファイルは図 5 のようなドーナ ツ状になるはずであるが,現状はダクトー杯に広がっ た,ほぼー様なX線ビームとなっている。輸送される PXR の空間モードは電子ビームの軸と分光結晶の成 す角度に非常に敏感であるため,X線プロファイルの 一様化の原因として電子ビームの軌道の変動が考え

図 4: X 線透過画像: 左) ポラロイドによる IC チップ (18 keV); IP による IC カードと Al ステップ(13.5 keV)

られる。用途に合わせて軌道やターゲット結晶上で の電子ビームのスポット形状を制御する必要がある と思われる。

4. エネルギー勾配とK吸収端の観測

PXR 発生装置で得られる X 線には、図 5 にあるように水平方向にほぼリニアなエネルギー(波長) グラ デーションを持つという特徴がある。そのため、図 6 のようにイメージングによって K 吸収端を確認する ことができる。PXR 発生装置はパルス線源であるた め半導体検出器による測定はシグナルのパイルアッ プの問題のため困難であり、また現在の 2 Hz 運転で は結晶分光による測定は効率が悪い。そのため、現在 は K 吸収端の観測によって簡易的に X 線エネルギー の確認を行っている。

ポラロイドフィルムの場合,乳剤にAgBrを使用しているため,BrのK吸収端(13.474 keV)で感度が大きく変わる。図7の画像は、ターゲット結晶の回転によりPXRの中心エネルギーを変えたときの様子である。それに従って,K吸収端に相当するエネルギーの位置が動いているのが確認できる。また下の図は、画像の破線内部の明度を縦方向を積算してプロットしたものである。横軸は吸収の立ち上がりを基準として理論的に予想されるエネルギー勾配で較正してある。吸収端の高エネルギー側に同じような構造が見られるが、これはXAFS構造が直接観測されている可能性がある。X線のエネルギーグラデーションの分

Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

図 5: X 線ポート出口 (ターゲット結晶からの距離は 7 m) での X 線プロファイルとエネルギーグラデー ション (13.5 keV)

図 6: ポラロイドによる Cu の K 吸収端 (8.981 keV) の撮影。左側が高エネルギー側となっている。厚さ 20 µm の Cu 薄膜を使用した。

解能は電子ビームのスポットサイズに強く影響され ると考えられ、今後詳細に研究する必要がある。

5. X 線集光光学系

PXR の強度は電子ビームの duty cycle で制限され ているため、光子フラックスをエンハンスするために 集光光学系の導入が望まれる。現在、Rh コーティング を施した全反射楕円ミラー(Kirkpatrik-Baez 光学系) のセットアップを進めており、X 線集光の実験を今後 進めていく予定である^[4]。

6. まとめと今後の課題

2 結晶型の PXR 発生装置からの X 線を実際に観測 することに成功し, X 線イメージングによって指向性 や単色性, ユニークなエネルギーグラデーションなど

図 7: ポラロイドフィルムの Br-K 吸収端 (13.474 keV) 付近の挙動。中心エネルギーは、a)13.35 keV, b)13.5 keV, c)13.65 keV である。条件を変えても吸 収端周辺に同じような構造が現れた。

が大まかに確認することができた。 今後取り組むべき課題として、

- X線強度の定量的な測定
- エネルギースペクトルやグラデーションの詳細 な測定
- 高感度 X 線イメージングデバイスの導入
- X線ビームラインのバックグラウンド放射線流入の低減
- X 線集光光学系のテスト
- 電子ビームとX線プロファイルの相関の研究
- 干渉イメージングの検討

になどが挙げられる。

7. 謝辞

この研究は文部科学省・学術フロンティア推進事 業および日本学術振興会・科研費(15760039)の助成 を受けている。

参考文献

- [1] A.V. Shchagin et al., Phys. Lett. A 148, (1990) 485.
- [2] Y. Hayakawa et al., Proc. of the 12th Symposium on Accelerator Science and Technology, (1999) 391.
- [3] Y. Hayakawa et al., Proc. of 26rd Linear Accelerator Meeting in Japan, (2001) 110.
- [4] Y. Hayakawa et al., Proc. of VI International Symposium "RREPS-03", Sep. 8-11, 2003, Tomsk (to be published in NIMB).