PRESENT STATUS OF ION STORAGE AND COOLER RING, S-LSR

A. Noda ^{1,A)}, M. Ikegami ^{A)}, Y. Iwashita ^{A)}, T. Shirai ^{A)}, M. Tanabe ^{A)}, H. Tongu ^{A)}, S. Nakamura ^{A)}, H. Fadil ^{A)}, S. Fujimoto ^{A)}, A. Yamazaki ^{A)}, T. Takeuchi ^{B)}, K. Noda ^{B)}, S. Yamada ^{B)}
M. Iwata ^{C)}, S. Shibuya ^{C)}, A. Takubo ^{C)}, T. Fujimoto ^{C)}, H. Fujiwara ^{C)}, M. Grieser^{D)},

I. Meshkov^{E)}, E. Syresin^{E)}

^{A)} Advance Research Center for Beam Science, Institute for Chemical Research, Kyoto University Gokano-sho, Uji-city, Kyoto 611-0011

^{B)} National Institute of Radiological Sciences, 9-1, Anagawa 4, Inage-ku, Chiba-city, 263-8555

^{C)} Accelerator Engineering Co. Ltd. 13-1, Konaka-dai 2, Inage-ku, Chiba-city, 263-0043

^{D)} Max-Plack-Institut für Kernphysik, Postfach 103980, Heidelberg 69029, Germany

^{E)} Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia

Abstract

At Institute for Chemical Research, Kyoto University, an ion accumulation and cooler ring, S-LSR is now under construction in the existing accelerator building in order to perform the experimental studies on the energy-spread reduction by phase rotation of laser-produced ions and further electron beam cooling of hot ion beams. In parallel to this, 3-dimensional laser cooling of $^{24}Mg^+$ at S-LSR is also planned and the lattice without dispersion throughout the whole circumference is proposed with superposition of the electric fields with the dipole magnetic fields.

イオン蓄積・冷却リングS-LSR計画の現状

1.はじめに

近年の目覚しいレーザー技術の発展を加速器技術と組み合わせることにより、放医研の臨床試験でそ

の有効性が注目を集めつつある粒子線治療のより広 範な普及に貢献するため、京大・化研は放医研及び 原研・関西研との協力によりレーザー生成イオン ビームをがん治療専用の短パルスイオンシンクロト

図1:レーザー実験棟と放医研との共同研究により京大・化研に建設中のS-LSRのレイアウト

¹ E-mail: noda@kyticr.kuicr.kyoto-u.ac.jp

Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

Magnetic Field Measurement – Hall probe mapping

ロンの入射ビームとして用いる可能性に関するR&D を、先進小型加速器開発の一環として平成13年度 から推進してきた^[1]。ホットイオンビームの電子 ビーム冷却に関してはドイツハイデルベルグのマッ クスプランク原子核研究所のTSRを用いて、イオン ビームと電子ビームの相対速度を掃引する手法の feasibility testを行い、タンデム加速器からの ビームのように横方向のエミッタンスの小さなビー ムについては我々の提案する手法が有効であり、 ビーム冷却時間が通常の2.8秒から0.4秒程度にまで 短縮可能であることが示されている^[2]。然しながら、 このビーム冷却時間は横方向エミッタンスに依存す ることが知られており、がん治療装置という臨床使 用に当たっては、実際のレーザー生成イオンビーム についてのfeasibility testが不可欠である。

この目的のため、図1に示したようなイオン蓄 積・冷却リングS-LSRを京大・化研の既存の加速器 実験室内に設置し、隣接するレーザー棟に設置され る10TWレーザーを導き、薄膜照射によって生成され るイオンビームを位相回転によりエネルギー幅を縮 減した後、S-LSRに入射して電子ビーム冷却実験を 行うことを予定している。

一方、このS-LSRは6回対称性をもち、1周期あ たりのベータトロン振動の位相の進みを小さく押さ えるモードが可能であるため、岡本らの提案する3 次元レーザー冷却^[3]により極低温イオンビーム (クリスタルビーム)を実現できる可能性も有し ており、こうした方向の研究の展開も考慮してい る。このS-LSRの建設の現状を紹介する。

2 . S-LSRの電磁石系

S-LSRの偏向電磁石はホール素子を直交座標系 で駆動するマッピングによる磁場測定(図2参 照)でその性能評価が完了しており、磁場の不均 一性は2x10⁻⁴以下におさまっていることが確認で きている(図3参照)^[4]:。

4 重極電磁石に関しては、図2に示したような ホール素子によるマッピングに加えて、コイルを 水平面内で駆動し、発生する誘導起電圧を測定す

図3.偏向電磁石の磁場分布

ることで磁場勾配を評価するシステム(コイルシフ ターと称する。図4参照)を作成し、測定を行った。

図4.4 車極電磁石に取り付けられた磁場勾配評価用 に製作したコイルシフター

図5にホール素子とコイルシフター両者による測 定結果を示す。両者でコンシステントな結果が得ら れていることが判る。

- 3.電子ビーム冷却
- S-LSRの電子ビーム冷却はエネルギー拡がりが±1% 程度のホットイオンビームを扱うので、イオン と電子の相対速度の掃引を行うことを想定して いる。この目的のためイオンの加減速が可能な

図5.ホール素子とコイルシフターによる4重極電磁

Proceedings of the 1st Annual Meeting of Particle Accelerator Society of Japan and the 29th Linear Accelerator Meeting in Japan (August 4 - 6, 2004, Funabashi Japan)

誘導加速装置を設置する。また、電子ビーム冷却装置は長さ1.86 mの直線部に設置する必要がありトロイドの中心曲率半径は0.25 mと小さく選んでおり、磁場の均一性を実現するために細心の注意が必要とされる。その確認のため、ソレノイド、トロイドの磁場測定は、図7に示したようにホール素子を(a) 直交座標系と(b)電子ビーム軌道に沿ったレールを用いる両システムで駆動し、両系でのコンシステンシーを確認しつつ評価を進めている^[5]。

図6. 製作されたS-LSR用電子ビーム冷却装置

4. 無分散ラティスに向けての取り組み

S-LSRでは偏向電磁石部に電極を組み込み、磁場 に曲率半径に逆比例する電場を重畳することにより、 ビーム軌道の運動量分散を消すラティスの採用を計 画している^[6]。放電の問題なく所要の電圧が印加可 能であるためには、扱えるビームのエネルギーは低 エネルギーに限られることになり、我々は35~50 keVの²⁴Mg⁺ビームに対してこの方式の適用を考えて いる。偏向電磁石のギャップ70 mm中に設置される 真空槽中に電極を設置して、必要とされる電場の一 様性を実現するために中間電極を設ける等の種々の 工夫が凝らされている。また、この電極はレーザー 冷却のための波長282 nmのリングダイレーザー光を 導入するための開口部を必要としており、その影響

(a)中間電極(b)レーザー導入穴図8.試作された軌道無分散化のための電極

(a) 直交座標系でのホール素子駆動

(b)電子ビーム軌道に沿ったホール素子駆動 図7.電子ビーム冷却装置の磁場測定

を最小限に抑える工夫もなされている^[7]。図8に試 作された電極を示す。

5.タイムスケジュール

S-LSRは今秋に電磁石、電子ビーム冷却装置等の 精密据付を完了し、ビームモニターの位置較正を 行った上で真空槽の組み込みを行い、電力ケーブル 及び制御の配線と冷却水の配管を行い、平成17年 春からのビームコミィショニングの開始を予定して いる。

参考文献

- [1] A. Noda et al., Beam Science and Technology, 6, 21 (2001)
- [2] H. Fadil et al., Nucl. Instr. Meth. A517 (2004), pp1-8.
- [3] H. Okamoto, .A.M. Sessler and D. Möhl, Phys. Rev. Lett. 72 (1994) 3977.
- [4] M. Ikegami et al., Proc. of COOL03, Hotel Mt. Fuji, May, 2003, in print.
- [5] H. Fadil et al., 本報告集。
- [6] M. Ikegami et al., submitted to Phys. Rev. ST-AB.
- [7] 池上将弘他、本報告集。