超流動ヘリウム中における超伝導空洞用フランジ部のシール法

達本 衡輝^{1,A)}、斎藤 健治^{B)}、井上 均^{C)} 小林 芳治^{C)} ^{A)}日本原子力研究所 大強度陽子加速器施設開発センター 〒319-1195 茨城県那珂郡東海村白方2-4 ^{B)} 高エネルギー加速器研究機構 加速器研究施設 〒305-0801 茨城県つくば市大穂1-1 ^{C)} 高エネルギー加速器研究機構 工作センター

〒305-0801 茨城県つくば市大穂1-1

概要

2K以下の超流動ヘリウム中で運転される超伝導 加速空洞の真空シール方法として、我々は、これま でに純アルミニウムワイヤによる可能性について試 験を行ってきた。^{[1][2]}今回は、フランジ材、ボルト 材、シール材の組み合わせを種々に変化させて77K の液体窒素、および、2K以下の超流動ヘリウム中 におけるリーク試験を行い、従来用いられてきたイ ンジウムシールとの結果を比較することによってア ルミニウムシールの信頼性を評価した。

1.はじめに

超伝導加速空洞用のシール材として現在はインジ ウムが一般的に使用されている。インジウムは真空 シールとしての高い信頼性をもつが、非常に軟らか く自律性がないために空洞の組立・取り外しの際に 空洞内を汚染し、空洞性能劣化を引き起こす可能性 がある。我々は、容易に取り付け、取り外し可能な アルミニウムワイヤを超伝導空洞用フランジのシー ル材として検討しているが、超流動ヘリウム中で運 転される超伝導空洞においてはアルミニウムワイヤ のスーパーリークに対する信頼性を確立することが 必要である。そこで、本研究においては、まず、フ ランジ材、ボルト材、シール材を種々に組み合わせ た場合について液体窒素温度(77K)でのリーク試験 を行った。そして、77Kにおいてリークタイトで あった組み合わせのみ飽和超流動ヘリウム(2K以 下)中でリーク試験を行った。

2.77Kにおけるリーク試験

2.1 試験方法

表1に本リーク試験で用いたフランジ材、ボルト 材、シール材の種類と形状を示す。シール材は、In、 Al、Cuを用いた。Al(1050)、Cu(無酸素銅)にお いては、ワイヤーカットによって切り出した後、微 少化学研磨を施すことによって表面の酸化膜層を除 去した。ボルトは、SUSとA1のM8ボルトを用いた。 フランジ材には、SUSとTiを用いた。図1に本試験 で用いた2種類のフランジの概要図を示す。(a)は flat-flatフランジの場合 (A~H)を(b)は割フランジの 場合(I~K)を図示している。flat-flatフランジの場 合においては上部フランジには、ねじ切りはなく、 底部フランジのみねじ切りがある。この場合に用い たメタルシールの内径は、136mmであり、厚さは1mm である。しかし、フランジに溝きりがある場合(E ~H)においては、厚さが1.2mmと1.5mmのシールを 用いた。一方、割フランジの場合においては、図1 (b)に示すようにフランジ部にはすべてねじ切りは

	表1リーク試験でもちいたフランジ材、ボルト材、シール材の組み合わせ フランジ Bolt Seal ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・									
	フランジ			Bolt Seal						
	材質	表面	アニール	材質	材質	アニール	厚さ	1月 ~う		
А	SUS	フラット	0	SUS	In	×				
В	SUS	フラット	0	SUS	AI	×	1 mm			
С	SUS	フラット	0	AI	In	×	1 mm			
D	SUS	フラット	0	AI	AI	×	1 mm			
Е	SUS	0.6mm 溝きり	0	AI	AI	0	1.5 mm	シールのアニールは真空中500°C1時間		
F	SUS	0.6mm 溝きり	0	SUS	Cu	0	1.2 mm	シールのアニールは真空中500°C1時間		
G	SUS	0.6mm 溝きり	0	AI	Cu	0	1.2 mm	シールのアニールは真空中500°C1時間		
н	Ti	0.6mm 溝きり	0	AI	AI	0	1.2 mm	シールのアニールは真空中500℃1時間		
I	Ti, SUS	フラット	0	AI	AI	×	1 mm	Top、割フランジはSUS,その他はTi		
J	Ti, SUS	フラット	0	SUS	AI	×	1 mm	Top、割フランジはSUS,その他はTi		
к	Ti	フラット	0	Al	AI	×	1 mm			

¹ E-mail: tatumoto@cens.tokai.jaeri.go.jp

(a)フラット - フラットフランジ

(b)割フランジ 図1 フランジの概要図

なく、ボルトはナットで締め付ける構造になってい る。この場合に用いたメタルシールの内径は、85mm であり、厚さは1mmである。全ての場合においてボ ルトはトルクレンチの表示値150 kgf cmで締め付け た。Aの組み合わせは、従来低温におけるシール方 法として一般的に用いられているInシール、SUSボ ルトの組み合わせを表している。

77K-400K間の熱サイクル下におけるリーク試験 を表1に示す組み合わせで行った。リーク試験は、 常温で測定したのち、120 でベーキング(一時間保 持)を行い、常温まで空冷したのち、液体窒素に よって77Kまで冷却した。その後、120 雰囲気の 乾燥機内に放置することによって常温まで昇温した。 リーク試験は、393K,300K,77Kの状態でヘリウム リークディテクターを用いて行った。これを1サイ クルとし、最大5サイクルまでヒートサイクルを繰 り返してリーク試験を行った。

2.2 試験結果

表2に77Kにおける試験結果を示す。従来使用さ れているボルト材(SUS)とシール材(In)の場合(A)、 および、AIボルトを用いた場合(C)では、リークタ イトであった。ボルトとシールの材質が異なる場合 (B,E,H)では、77Kにおいてリークが発生した。Al をシール材として使用した場合、ボルトも同じ材料 のAIを用いるとリークタイトであった(D,E,H,J,K)。 通常Cuガスケットの締め付けには、SUSボルトが使 用されている(F)。この場合、3サイクル目で77K に冷却したときにリークが発生した。各材料の熱膨 張係数 (T)の種々の温度範囲における積分値を表 3 に示す。SUS(ボルト材)とCu(シール材)の熱膨張 係数は、常温から400Kの範囲においては非常に似 通っているが、常温から液体窒素温度領域において は、Cuの方がSUSに比べて熱膨張係数が大きいので、 シールとフランジ感に僅かな隙間が生じたと考えら れる。しかし、SUSボルトの代わりに、シール材 (Cu)より、熱膨張係数の大きいAlボルトを使った場 合(G)では、リークタイトであった。低温部におい ては、この組み合わせにおいては締め付ける方向に 力が働くためであると思われる。常温から400Kの範 囲においてAIの熱膨張係数はCuのそれと比べて約 1.4倍大きいが、フランジ自体の自重によってボル トの伸びは制約されるので400Kのベーキング後も リークタイトであったと思われる。

Tiは、一般に表面の酸化膜が問題とされているが、 今回の結果においては、アニールのみを行っただけ で特別な表面処理を行って表面酸化膜層を管理して はいないが、Alシール、Alボルトの組み合わせにお いては溝きりフランジでも割フランジの場合におい てもリークタイトであった。Tiの表面酸化膜層の影 響はこの実験結果からはほとんど影響がないように

表2 リーク試験結果(77K-400K間のヒートサイクル)										
Type	フランジ	ボルト	シール	フランジ表面	1st	2nd	3rd	4th	5th	備考
А	SUS	SUS	In	フラット	0	0	0	0	0	
В	SUS	SUS	AI	フラット	0	0	0	×		77 Kでリーク
С	SUS	AI	In	フラット	0	0	0	0	0	
D	SUS	AI	AI	フラット	0	0	0	0	0	
Е	SUS	AI	AI	0.6mm 溝きり	0	0	0	0	0	
F	SUS	SUS	Cu	0.6mm 溝きり	0	0	×			77 Kでリーク
G	SUS	AI	Cu	0.6mm 溝きり	0	0	0	0	0	
Н	Ti	AI	AI	0.6mm 溝きり	0	0	0	0	0	
Ι	Ti, SUS	SUS	AI	フラット	0	0	0	×		77 Kでリーク
J	Ti, SUS	AI	AI	フラット	0	0	0	0	0	
К	Ti	AI	AI	フラット	0	0	0	0	0	

表3 各温度範囲における熱膨張率の積分値 ×10 ⁻³										
	300K-77K	300K-400K	300K-2K							
Al	4.10	2.40	4.31							
SUS	2.72	1.53	3.54							
Cu	3.09	1.71	3.31							
Ti	1.49	0.90	1.56							

思われる。

低温で使用する場合、フランジ材の種類には関係 なく、ボルト材は、シール材と同種のものか、シー ル材よりも線膨張係数が大きい材質のものを使用し なければならないことがわかる。

3. 超流動ヘリウム環境下でのリーク試験

3.1 試験方法

77K-400K間のヒートサイクルにおいて5サイクル リークタイトであった組み合わせ(C,D,E,H,K)に ついて超流動へリウムによるスーパーリークの影響 を調べた。クライオスタットにフランジを取り付け たのち、常温のヘリウム雰囲気でリーク試験を行っ た。液体ヘリウムを供給しながら、4.2Kまで冷却し、 真空ポンプで液体ヘリウムを真空排気することに よって、 温度(2.17K)以下の超流動ヘリウム (HeII)温度まで冷却した。約2時間He IIの中で封 じ切りで放置したのち、77Kまで昇温した後リーク テストを行った。

3.2 試験結果

図2にHe IIで2時間放置後の77Kにおけるリーク 試験結果の1例を示す。これらのリークディテク ターからのリーク量を時間積分し、それらの値を実 際にHeIIに保持した時間で除することによって超流 動へリウム中の単位時間あたりのリーク量(atm cc/s)を算出した。その結果を図3に示す。シール 材、ボルト材は同材料のAIを使用した場合は、従来、 用いられてきたSUSボルトInシールの組み合わせの

図3Hell中における単位時間あたりのリーク量

場合よりもリーク量は低くなっている。また、超流 動中においてもフランジ材による影響は殆どない。 本研究において、AIシールのスーパーリークに対す る信頼性を明らかにすることができた。

4.まとめ

本研究ではメタルシールのスーパーリークに対す る信頼性を明らかにするために、フランジ材、ボル ト材、および、シール材を種々に組み合わせて超流 動へリウム中でリーク試験を行った。低温リークは フランジ材の種類には殆ど無関係であり、シール材 とボルト材の熱膨張率の差が大きく影響することが わかった。AIシールの超流動へリウム環境下におけ るスーパーリークに対する信頼性を明らかにするこ とができた。

参考文献

[1] K.Abe, et al., "Vacuum Sealing Aluminium Wire for Superconducting RF cavities" Proceedings of the 25th Linear Accelerator Meeting in Japan, Himeji, Jul. 12-14, 2000

[2] H.Ao, et al., "超流動ヘリウム環境でのNb/SUS異

材接合およびシール法", Proceedings of the 26th Linear Accelerator Meeting in Japan, Tsukuba, Aug. 1-3, 2001

図2 リーク試験結果