重イオン注入線形加速器用永久磁石型ECRイオン源

長江 大輔^{1,A)}、土屋 和利^{A)}、高野 淳平^{A)}、服部 俊幸^{A)}
^{A)}東京工業大学 原子炉工学研究所
〒152-8550 東京都目黒区大岡山2-12-1

概要

プラズマ閉じ込めミラー磁場を増大しながら、 プラズマチェンバーを確保できるような永久磁石型 ECRイオン源を、永久磁石の大きさ、形状から位置 関係、さらに他の要素との位置関係を考慮しながら、 磁場シミュレーションを行い開発した。また、この 磁場シミュレーションを使って高周波電力と冷却の 増強を生む逆転磁場を減衰する方法を検討した。こ れらの結果を基に製作した永久磁石型ECRイオン源 の周波数依存性について試験を行った。性能試験・ 性能評価の結果を報告する。

1. はじめに

ECRイオン源は医療分野をはじめ多くの工業分野 でも使用されている。医療や工業分野では小型で省 電力のイオン注入機が求められているが、常伝導ソ レノイドECRイオン源ではそれを満足しない。既存 の永久磁石ECRイオン源は常伝導ECRイオン源の性 能を下回っており、高強度多価重イオン生成用の常 伝導ECRイオン源と同程度の性能を持つ小型・省電 力の永久磁石ECRイオン源の開発・実用化の必要性 がある。その為、多価重イオン用永久磁石ECR源の 開発・設計を行った。

2. The Value of Mirror Field

12.5~14.5Ghzのマイクロ波で運転する高強 度多価重イオン用永久磁石型ECRイオン源のミラー 磁場最適化を磁場計算プログラムPoissonを用いて 行った[1]。ミラー磁場増強の為、プラズマチェン バー内部に鉄を挿入した[2]。磁石の特性上、ミ ラー磁場のさらに上流、下流側に逆転磁場が発生し てしまう。上流側のものはプラズマチェンバー中心 軸での逆転磁場が5.6kG以上となり、プラズマチェ ンバー周辺部では14.5GhzでのECR磁場5.17 kGを超えてしまうことが分かった。

多価イオン生成には大きなパワーのRFが必要となるが、このままでは逆転磁場の部分にもECRzone ができてしまいメインとなるECRzoneに十分なRF パワーを供給できなくなってしまうと予想された。 その為、この逆転磁場を減衰させ、上流側ECRzone を発生させないよう、適度な大きさの鉄をリングマ グネットのプラズマチェンバー側に挿入した。イオ ン源概略とプラズマチェンバー中心軸でのミラー磁 場を図1、図2に示す。ミラー磁場分布は上流側 が9kG、下流側が7.5kGである。この場合にはプ ラズマチェンバー中心軸での逆転磁場が4kGとな り、プラズマチェンバー周辺部でもECR磁場を越え ることはなかった。これにより逆転磁場による ECRzone生成をおさえることができると考えられる。

製作したイオン源のミラー磁場を図3に示す。 実際の磁場はシミュレーションの値より約10%低 かった。この理由は詳しくは分からない。このイオ ン源の主なパラメーターを表1に示す。

¹ E-mail: g02m3136@es.titech.ac.jp

表1 永久磁石型ECRイオン源のパラメーター

Microwave power source		
Frequency	12.5-14.5 GHz	
Max Output Power	200 W	
Diameter of plasma chamber	50 mm	
Hexapole magnet		
Field on surface of plasma chamber	10 kG	
Inner diameter	60 mm	
Outer diameter	130 mm	
Mechanical Length	120 mm	
Mirror field		
Side of Gas-feed	9kG	
Side of Extraction	7.5 kG	

3. 実験

永久磁石型ECRイオン源は常伝導ソレノイドECR イオン源のようにミラー磁場を変化させることがで きない為、周波数を変化させて、その特性を調べた。 実験はArガスを用い、Mass Flowは1~2x10⁻⁶Torrに なるように調整した。

AMPの増幅率を一定にした時の周波数とそのパワーの関係を図4に示す。13.5Ghz以下はRFが入らなかった。

この結果から多くのパワーの入った13.947 GHzでInput Powerを変えてArの価数分布を調べた。 表2はその結果である。

表2 RF PowerとIon Current

RF Power (W)	Ar+ (eµA)	Ar ²⁺	Ar ⁴⁺
80	190	90	2.7
90	175	88	3.5
100	165	85	4.1
110	156	81	4.7
120	150	80	5.8
130	150	77	6.6
140	145	73	7.1
150	142	71	7.3

Ar⁺の電流量がどのパワーでも一番多く、RF Power を増やしてもCharge stateに変化Ar²⁺がないこ とから、ECRzoneが閉じていないのかとも思われる。

4. まとめ

永久磁石型ECRイオン源の設計、製作、性能評価 を行った。ミラー磁場はシミュレーションと実測の 間に約10%の差があったがこの理由はまだ分かっ ていない。測定したビーム電流量はAr⁺が一番多い ことからECRzoneが閉じていないと思われたので低 い周波数での実験を試みたがRFが入らずプラズマ が点灯しなかった。この原因も解明できていないの で、引き続き実験を試み、解明するつもりである。 加えて逆転磁場対策の効果も検証する予定である。

5. 参考文献

- [1] M. Muramatsu; Rev. of Sci. Inst. Vol.73 No.2 pp573-535 2002
- [2] Dan Z.Xie ; Rev. of Sci. Inst. Vol.73 No.2 pp531-533 2002