原研関西研のフォトカソードマイクロトロンの現状

神門正城^{1, A)}, 小瀧秀行^{A)}, 近藤修司^{A)}, 金沢修平^{A)}, 益田伸一^{A)}, 本間隆之^{A)}, 中島一久^{A)B)} ^{A)}日本原子力研究所 関西研究所 光量子科学研究センター

〒619-0215 京都府相楽郡木津町梅美台 8-1

^{B)}高エネルギー加速器研究機構

〒305-0801 茨城県つくば市大穂 1-1

概要

原研関西研究所のフォトカソードマイクロトロン の最近の成果を報告する.加速器ビームラインを延 長し,レーザー加速を行うチャンバー,レーザー輸 送ラインとの接続を行った.また,サブ pC の微小電 荷量を測定するためのビームプロファイルモニタの 材質の比較を行った.併せてビーム安定化のための 計画等も報告する.

1.はじめに

我々はレーザー航跡場加速の実証のために高品質 入射装置としてフォトカソード RF 電子銃と race-track 型マイクロトロン(以下, RTM)を組合わ せた加速器を整備してきた[1-2].レーザー航跡場加 速実験は今年度末に計画されている、フォトカソー ドマイクロトロンに関する最近の研究として,種々 の電子プロファイルモニタの比較,フォトカソード マイクロトロンの暗電流計測,運転時の放射線量分 布測定,検出器試験,入射系の真空系への質量分析 計の導入,冷却水温度安定化がある.本発表では, フォトカソードマイクロトロンシステムの概要と新 しい制御システムの構築、プロファイルモニタ試験 について述べる.さらに今後の課題として,ビーム 電流安定化のために冷却水温度安定化のための改造 を検討中およびレーザー加速のための同期システム を紹介する.

2.フォトカソードマイクロトロン

2.1 システムの概要

フォトカソードマイクロトロンシステムの紹介を する.電子銃は,BNL タイプの 1.6 セルの定在波型 の空洞を持つフォトカソード RF 電子銃である.カソ ード照射用レーザーは,全固体 Nd:YLF レーザーシ ステムで,エネルギー安定度 0.2 % rms である.こ の RF 電子銃は,短パルス,高輝度の電子銃で問題と なる線形空間電荷力によるエミッタンス増大を補償 するソレノイド電磁石が装着されているのが特長で, エネルギー3.5 MeV,エミッタンス1~10 π mm-mrad, パルス幅 5~10 ps,電荷量最大 3 nC の電子シング ルバンチを発生させることができる.マイクロトロ

.....

ンは住友重機械製のものを使用し、1.2 T の偏向電磁 石を2つ持ち、直線部の1つに設置された定在波型 の加速空洞で25回加速され、150 MeV に到達する、 測定されたビームの電荷量は、最大 120 pC、エミッ タンスは 10π mm-mrad、パルス幅は10 ps (rms)であ る、エネルギー分散は計算機コードでは0.1% (FWHM)と予測されている、

2.2 ビームラインの延長と制御系の構築

一昨年度,RTMのビームラインを延長し,実験チャンバーまで電子ビームを導いた.電磁石やスクリーンの制御はマイクロトロンの制御系とは別の, VMEを用いた制御系を新たに構築した(図2).この理由は,従来のRTMの制御はGP-IBを主体としたシステムであり,その制御値の読み取りに時間がか

図2:新しいビームトランスポート制御系の構成図

かっていた.このためこれ以上の機器の増設は厳し いと考えたからである.制御機器の数は偏向電磁石 5台,四重極電磁石8台,ステアリングコイル6台, 可動式スクリーン5台である.これはLinuxをOSと したVME上のPCで制御される.マン-マシンインタ ーフェース用の制御プログラムはWindows2000上の VisualBasic で作成されており,reflective memory (RFM)を通して実験室にあるVMEのPCと電磁石等 の制御値と読取り値を通信している.実験室と制御 室間を光ファイバで結ばれ,最大13.4 Mbytes/secの 通信速度をもつ.制御ソフトウェアは,VMIC 製の ドライバを除き全て自前で開発した.

3.ビームモニタ用フォスファーの比較

レーザー加速の場合,ビーム電荷量がショット当 たり 10 pC 程度,調整前はそれよりも低いのでオン ラインで感度の良いプロファイルモニタが必要であ る.通常の加速器の場合, Desmarquest の AF995R が モニタとして使用される.今回は,それに対して医 療用 X 線増感紙(Kodak 製 LANEX), ウランガラス, CRT に使用される ZnS:Cu 系の蛍光体(東芝製),プ ラスチックシンチレータをビームライン上に入れ 実際にビームの発光を測定し AF995R との比較を行 った.準備の都合上,スクリーンは大気中におかれ, 電子ビームはカプトン窓を透過し大気中を約 30 cm 飛んでスクリーンに入射した .今回の測定では ,CCD の発光量の較正を行っていないため相対比較である。 これらのスクリーンのうち,LANEXと蛍光体が光量 が多かった、プラスチックシンチレータも発光量は 多いが,この測定では厚さ20mmのものを使用した ため,また半透明であることから表面からの発光を 見るプロファイルモニタとしては観測しづらかった. 蛍光体に関しては発光寿命が長いため,測定する

図 3 : プラスチックシンチレータからのビームの 発光.

CCD をゲート型のものにした場合は,実効的な光量が低くなると予想される.定量的な測定および詳細

な性質については今後の課題であるが,レーザー加 速などの微小電流加速のためのモニタとしては LANEX が有望であると考えられる.実際に Michigan 大ではこのスクリーンを用いてレーザー加速電子ビ ームのプロファイルを測定している.また,LANEX を用いることで,我々は初めて 150MeV ラインでの 暗電流のプロファイルに成功した.これについては, 次のセクションで述べる.これらのプロファイルモ ニタの通常の加速器への応用としては,ビームハロ ー等の測定に使える可能性がある.

プラスチックシンチレータの場合にビームが透過 する際に,シンチレータの端面からビームの軌跡に 沿う発光が観測された(図3).指向性の高いビー ムで十分な入射エネルギーがある場合は簡便なビー ム診断に用いることができるかもしれない.

4.150 MEV 暗電流

フォトカソード電子銃ではその高い加速電場(100 MV/m)に起因する電界放出暗電流が発生する.我々 の加速器では電子銃直後で2 nC/macro pulse が典型的 な値である.この暗電流のマクロなパルス幅は,RF 電子銃に RF が貯えられている時間幅と同程度で約2 µs(FWHM)である.このマクロパルスは約 5700 個の マイクロバンチから成り ,1 マイクロバンチ当たりの 電荷量は350 fC と見積もられる. それに比してレー ザー照射の光電流はシングルバンチであり,マイク ロバンチとの S/N 比は 100 以上である.これは RF 電子銃出口までの議論であり,続いてマイクロトロ ンで加速されるので,暗電流はさらに減る.これま での我々の計測の範囲では,150 MeV にまで到達す る暗電流計は計測限界以下であった.今回は,前節 で述べたように LANEX スクリーンによるプロファ イルで初めて定量的に測定が行えた.

まず光電流で LANEX スクリーンの位置でビーム を絞り,半値全幅で 4×4 mm とした.光量が飽和し ないようにフォトカソード用のレーザーの出力を調 整し,0.6 pC とした.この値はビームトランスポー トの最後にあるコアモニタ CT-3 のパルス波高から

図4:LANEX スクリーン上で観測された 150 MeV 光電流(左)と暗電流(右)のビームプロ ファイル

求めた.次に,レーザー照射を遮り,暗電流でのスポットを確認した(図4).暗電流のビームサイズ

は,4×3 mm でありビームとほぼ同程度であった. CCD のピクセル値から暗電流の電荷量を見積もると, 0.2 pC/macro pulse であった.これにより LANEX ス クリーンは,150 MeV 電子に対して 0.01 pC/mm²の照 射があれば十分観測にかかることが分かった.

5.今後の予定

5.1 電流安定化

現在までの運転で、ビーム電流が午後になると不 安定になる現象が観測されている.これは,次のよ うな理由でおこると考えている.外気温は朝から午 後にかけて緩やかに上昇し,これにつれて建屋側の 二次冷却水の温度も上昇していく.この温度がしき い値をこえると冷却塔のファンが回り,冷却水温度 が急激に下がる .この変化に RF 電子銃を冷却してい る一次側冷却水の温度が追従しきれずに約 1 度変動 し,共振周波数がずれることでビームの軌道がずれ, 電流値が変動する.この問題は,一次側の温度制御 の PID パラメータを変えたが,良い解が見つからず, 結局二次側の温度が再び緩やかな変化になるのを待 つのが現状での解となっている.これを改良するた め,フォトカソード RF ガンの空胴温度,冷却水の温 度とビーム電流の変化を測定するシステムを7月に 導入する予定である.また,一次側冷却水を独立し た閉ループの冷却系への改造を検討している.

5.2 入射部の真空モニタ

入射部に残留ガス分析計(Stanford Research Systems製RGA-200)を導入した.これにより運転時 の異常事発見に役立つと考えている.実際,過去に RF窓がリークし,導波管に充填されているSF₆ガス が加速空胴に入るというトラブルが2回あった.さ らに RF コンディショニング時のアウトガスの成分 やフォトカソード RF ガンの量子効率への影響をモ ニタしたいと考えている. 5.3 レーザー同期系の構築

レーザー航跡場加速実験のためには,加速器の電 子ビームとレーザーパルスをピコ秒の精度で同期さ せる必要がある.これはRFのマスターオシレータか ら分周した RF でレーザーの源発振周波数を同期さ せることで達成される.すでに,ケーブル配線,RF 分周器やRF アンプは用意され,残る作業はレーザー オシレータへの同期系組込みとシステムの調整であ る.今年度中にレーザーへの改造を行う予定である. フォトカソードマイクロトロン自身も同様の方式で RF とレーザーの同期をとっており,3.5ps 程度が達 成されている.

6.まとめ

原研関西研のフォトカソードマイクロトロンの現 状を報告した.本来の目的であるレーザー加速実験 のために着実な改良を進めている.微小電流用のプ ロファイルモニタとして,LANEX,ZnS系蛍光体の 有用性を確かめた.また,150 MeV の暗電流を初め て観測し,0.2 pC と見積もった.また,ビームサイ ズが光電流と同程度のビームサイズを持つことが分 かった.今後もビーム安定化等の改良を加え,本来 の目的であるレーザー加速を実施していく予定であ る.

7.謝辞

ウランガラスは光量子科学研究センターの西村昭 彦氏からご提供頂き,測定にもご尽力頂きました. ここに感謝致します.

参考文献

- 神門 正城ほか "原研関西フォトカソード・マイクロ トロンのコミッショニング" Proceedings of the 25th Linear Accelerator Meeting in Japan Himeji Aug. 1-3 2001.
- [2] 神門 正城ほか、"レーザー加速のためのフォトカソ ードマイクロトロン"、 Proceedings of the Second Symposium on Advanced Photon Reaseearch Nov.9-10 2000.
- [3] S.-Y. Chen et al. " Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield" Physics of Plasmas 6 12 pp. 4739-4749 (1999).