X線SASEを目指したエッジフォーカスウィグラーの開発研究

三原 彰仁^{A)}、磯山 悟朗^{A)}、 加藤 龍好^{A)}、 柏木 茂^{A)}、 山本 樹^{B)}、 土屋 公央^{B)}
 ^{A)}大阪大学産業科学研究所
 〒567-0047 大阪府茨木市美穂ヶ丘8-1
 ^{B)}高エネルギー加速器研究機構
 〒305-0801 茨城県つくば市大穂1-1

概要

FEL実験において広く用いられているHalbach型ウィ グラーは電子ビームの蛇行軌道面に対し、垂直方向に は弱い集束力を持つが水平方向には集束力を持たない。 X線SASE (Self-Amplified Spontaneous Emission)では使 用するウィグラーが100mを超える長尺になるので水平 方向への電子ビームの発散が問題となる。我々はこの 問題を解決するべく、水平方向にも集束力を持った エッジフォーカスウィグラー(EFウィグラー)を考案 した。また、それの作り出すであろう磁場分布を3次元 磁場解析コードにより導出した。さらに =2°のエッ ジ角を持ったEFウィグラー6周期分の試作機を製作した。 本稿では、EFウィグラーの特性及び試作機を製作する 際に用いた磁場エラーの最適化の手法について報告す る。

1.はじめに

阪大産研では遠赤外領域でのFEL及びSASEの原理実 証実験を行っている。とくに、SASEは共振器を用い ずに光の強度を指数関数的に増幅させることが可能な ため、反射率の高いミラーが存在しない真空紫外や軟 X線領域の高輝度光源として注目を集めている。真空 紫外や軟X線領域でのSASE発生には、長尺のウィグ ラー内をピーク電流値の高い電子ビームが、高輝度を 保ったまま通過する必要がある。そのような長い距離 において電子ビームの輝度を高く保つためには電子が 発散しないように集束力を与えねばならない。しかし、 Halbach型ウィグラーは蛇行軌道面に対し、垂直方向 (y方向)には弱い集束力を持つが、水平方向(x方 向)には集束力を持たないため、長尺のウィグラーを 通過する際に、電子ビームが発散してしまい高輝度を 保つのが困難である。これまでにもウィグラー内の電 子ビームに集束力を与えるいくつかの方法が議論され、 開発されている [1]-[5]

我々が開発を進めている集束型ウィグラーは、従来のHalbach型ウィグラーに用いられている長方形のマ グネットにエッジ角を持たせることで、x、yの両方向 に集束力を与えるものである(図1に示す)。

下の図はHalbach型ウィグラー及びそれが作り出す 磁場を模式的に示したものである。

ウィグラーを図2に示すように長さが $L_b = \lambda_u/\pi$ である 極性の異なる長方形型偏向磁石の列でモデル化する。 設計軌道は偏向磁石の真中でx方向の速度が0になる ように仮定した。ここで λ_u はウィグラーの周期長、偏 向磁場のピーク値を B_0 とし、図3では磁石の端で漏 れる磁場を $b = \lambda_u(1/2 - 1/\pi)$ と線形に近似した。 Halbach型ウィグラーは蛇行平面に対し垂直方向には 集束力を持つことが知られている。その集束力はウィ グラー内1周期において均一な大きさk $[1/m^2]$ (復元 力とも呼ばれる)で働くと仮定すると式(1)で表され る。これより集束力kは電子エネルギーの二乗に反比 例し磁場強度の二乗に比例することがわかる。つまり 長波長領域でのFEL やSASEにおいては電子ビームの エネルギーがそれほど高くないので十分強い集束力を 得ることが出来る。しかし、数100MeV から GeV

$$k = \frac{8 - \pi}{3\pi} \left(\frac{e}{m_0 c}\right)^2 \left(\frac{B_0}{\gamma}\right)^2 \qquad (1) \qquad \cancel{9} - \cancel{9} = \cancel{9}$$

ルギー電子ビームに対してはほとんど集束力が働かな くなる。 平面型ウィグラーは長方形型偏向磁石で構成されているが、偏向磁石にエッジ角を持たせることで、×方向に対しても集束力を発生させる事が期待される。

Halbach型ウィグラーが与える磁場(x、z依存)

エッジ角 を付加した偏向磁石モデルを図4に、また、EFウィグラーと従来のHalbach型ウィグラーにより作り出されるy方向の磁場を数値計算により導き出した結果を図5に示す。表1は、図5の計算で使用した、Halbach型ウィグラー及び、EFウィグラーの持つパラメータを示している。また、我が産研のライナックで使用しているエネルギー12MeVの電子ビームに与えるx、y方向の集束力が等しくなるように = 2 に設定した。

表1:ウィグラーのパラメータ

Туре		Halbach(No Focus)
Magnetic Period	λ_{n}	60 mm
Gap	g	30 mm
K-value	ĸ	1.469
Residual Field	Br	1.13 T
Block Dimensions	•	
Horizontal	2a	100 mm
Vertical	2b	20 mm
Longitudinal	2c	15 mm

図5よりEFウィグラーの磁場はx = 0[mm]付近で、 Halbach型ウィグラーのそれと等しい。また、1[T/m] 程度の磁場勾配(dB_y/dx)を持つ事が分かる。この磁場 勾配によりx方向にも集束力が生じる。Halbach型ウィ グラーの時と同様にEFウィグラーのx、y方向のそれぞ れの集束力k_xとk_yがウィグラー内で均一に作用するものと仮定すると、それらは次のように求まる。

x方向の集束力は、エッジ角の値に比例するので エッジ角を正に大きくすれば高エネルギーに電子 ビームに対しても大きな集束力を与えることが出来 る。また(1)と(3)よりx、y方向の集束力には以下の関 係式が成り立つ

(4)からEFウィグラーの集束力は、ウィグラー偏向磁場が本来持つ弱い集束力kに制限されることがわかる。

図6: EFウィグラー内の適合ベータトロン関数

 $\phi > 0$ 、 $k_x < k$ であれば、x方向とy方向の両方に集束力 が生じるが、 $k_x > k$ の場合、 $k_y < 0$ となりy方向は発散を 示す。図6はウィグラー内での適合ベータトロン関 数 $_0$ を示す。ここでの適合条件は、ビームサイズ が一定となる $_0 = 0$ 、 $_0 = k^{-1/2}$ とした^[6]。実線は ϕ = 2°であるEFウィグラー、破線は一般のHalbach型 ウィグラーのそれを示す。

ここで10MeV程度の低エネルギー電子ビームに対し てEFウィグラーにおけるx、y両方向のベータトロン 関数はHalbach型ウィグラーのそれと同じ程度に小さ い。これは両方向共に弱い集束力kと同程度の集束 作用が生じていることを示す。またその集束力は ビームサイズを小さくし電子ビームの輝度を高く保 つのに十分な大きさである。20MeVより高いエネル ギーを持つ電子ビームに対しては、EFウィグラーは、 y方向に発散作用を持つため適合ベータトロン関数 ば与えられないが、x方向のそれはHalbach型ウィグ ラーのそれよりも小さく出来る。(2)式よりエッジ角 を正に大きくする事でx方向の集束力をさらに強く 出来、さらに(3)式よりエッジ角を負の方向に大きく する事で、y方向に強い集束力を持たせることが出 来ることがわかる。このような集束力を持つウィグ ラーは高エネルギー電子ビームに対してもx、yの両 方向に強い集束力を持つようFODO集束原理を応用 してウィグラー列を構成できる。

3 . EFウィグラーの設計及び磁場エラーの 最適化

$$k = k_x + k_y$$

図8:磁石ブロックの作り方(台形型と平行四辺形型)

ウィグラーを製作する際、磁石ブロックの持つ磁場エ ラーが問題となる。永久磁石はどんなに精度良く製造 されても、磁場強度と磁化方向に0.1%程度のばらつき が生じる。数千個以上の磁石を並べるウィグラーでは、 その磁場エラーが積み重なるので、磁石の並べ方に よっては電子の軌跡が設計軌道から大きくそれる事も ある。この磁場エラーの影響は、磁極に磁場補正用の 小さな磁石チップを取り付けたり、順番を並べ替えた りして小さく出来るが、それには磁極1つ1つの磁場を

$$k_{x} = \frac{4e}{m_{0}c} \frac{B_{0}}{\gamma} \times \frac{\phi}{\lambda_{u}}$$

$$k_{y} = \frac{8 - \pi}{3\pi} \left(\frac{e}{m_{0}c}\right)^{2} \left(\frac{B_{0}}{\gamma}\right)^{2} - k_{x}$$
(2)
(3)

測定する必要があり面倒な作業である。

今回、EFウィグラー試作機の製作にあたり、磁極の磁場を測定せず磁場エラーの最適化を行う方法を用いた。その方法を以下に紹介する。まず前提としてひとつの永久磁石内では磁化の方向、大きさが均

図9:磁石ブロックの配列とその配置の違いによるエラー の差 (実線で、 自身のエラーを、点線でそれぞれ の足し合わせを示す)

ーであるとする(エラー分布が均一である)。そし て、その磁石をいくつかに分割した時、それぞれも 元の磁石と同じエラーを持つとする。分割されたそ れぞれのブロックを図8のように適当な軸に対し 180[°]回転させて組み合わせることで、回転軸以外 の成分が打ち消され、磁化方向のエラーを小さく出 来ると考えた。この方法で磁石プロックを製造する ことで同じエラーのものが2つ出来る。

次に磁場強度のエラーを考える。ウィグラーを構 成している磁石ブロックの磁化方向はy及びz軸方向 のどちらかである。磁場強度のエラーを小さくする ためには同じエラーを持つ磁石が互いにエラーを強 めあわない様に工夫して配置する必要がある。ここ でAに生じるy方向のエラーを考える。図9より磁化 方向がy方向であるの磁石に注目すると同じエ ラーをもつ磁石をに配置した時はエラーが同じ向 きを向くために2倍に強め合っているがに配置す るとさっきのそれと比べ半分程になる。次に磁化方 向がz方向であるの磁石に注目すると同じく図9よ り、同じエラーを持つ磁石をに配置した時が最も エラーが小さくなる。

以上のような関係で磁石を配置することで磁場強度 のエラーを小さく出来ると考えた。このようにして磁 場方向、磁場強度のエラーを最適化しEFウィグラーを 設計した。実際製作した試作機(6周期分)の図面を図7 に示した。

4.今後の展開

これまでに、出来上がった試作機を構成する個々 の永久磁石ブロック(計96個)の磁場測定は終了して おり、現在はそれらのデータより予想される試作機 全体の磁場を計算している。本研究会では、その結 果について報告する。

今後は、これらの永久磁石を使い試作機を組み上 げた後、試作機全体の磁場測定を行い計算より求ま る磁場分布との比較を行う。また、その際に我々の 考案した磁場エラーの最適化がうまく成立している かなどについても確認・議論する予定である。一方、 今回試作した6周期のウィグラーをビームラインに挿 入した場合、エッジフォーカスの効果が確認できる かどうかの検討も行っていく予定である。

参考文献

- A. AVarfolomeev, V.V.Gubankov, A. H. Hairetdinov, S. N. Ivanchenkov, A. S. Klebnikov, N. S. Osmanov, S. V. Tolmachev, Nucl. Instr. and Meth. A 358 (1995) 70
- [2] R. D. Schlueter, Nucl. Instr. and Meth. A 358 (1995) 44
- [3] J. Pflueger, Y. M. Nikitina, Nucl. Instr. and Meth. A 381 (1996) 554
- [4] J. Pflueger, H. Lu, D. Koester, T. Teichmann, Nucl.Instr. and Meth. A 407 (1998) 386.
- [5] J. Pflueger, Nucl. Instr. and Meth. A 445 (2000) 366
- [6] M. Fujimoto, R. Kato, G. Isoyama, Symposium on Accelerator Science and Technology (2001) 461
- [7] M. Fujimoto, R. Kato, M. Kuwahara, T. Igo, T. Okita, T. Konishi, R. A. V. Kumar, S.Mitani, S. Okuda, S. Suemine, G. Isoyama, in:V.N.Litvinenko,Y.Wu (Eds.), Free Electron Laser 2000, Elsevier, Amsterdam, 2001, p. II-13