IFMIF加速器用RFQのためのループアンテナを用いた 多重RF入力結合系の特性

前原 直、森下 卓俊、森山 伸一、杉本 昌義、今井 剛、竹内 浩 日本原子力研究所 那珂研究所 核融合工学部 〒311-0193 茨城県那珂郡那珂町向山801-1

概要

国際核融合材料照射施設(IFMIF)の要素技術確 証フェーズ(KEP)活動において、加速器系RFQ開発 に関して3次元電磁界解析コードによる 175MHzRFQの設計とそれを基にしたモックアップ モジュールの試作を行い、その共振周波数及び励起 モードの測定などの高周波特性の評価を行った。ま た175MHzRFQの幾何学的寸法から大電力入射のた めのループアンテナとして多重RF入力結合系の設 計を採用した。

1.はじめに

発電実証炉に向けた核融合炉材料開発を促進する ために、IEA(国際エネルギー機関)の協力の下で、 日本、米国、EUおよびロシアの共同による国際核 融合材料照射施設(International Fusion Material Irradiation Facility: IFMIF)の建設計画が検討されて いる。IFMIFでは、最大250mA、40MeVの重陽子 ビームを連続的に液体金属リチウムに衝突させ、重 陽子 - リチウム(D-Li)ストリッピング反応を利用し て14MeVの高速中性子束 (2MW/m²~10¹⁸n/m²s~ 20dpa/v) を発生させる施設であり、核融合炉構造材 料の主要な候補材料、フェライト鋼、バナジウム合 金、SiC/SiC複合材料等の研究開発が計画されてい る[1-3]。IFMIFの加速器施設は、125mA-40MeVの 加速モジュール2系列から構成され、液体金属リチ ウムターゲット部でこの2系列から最大250mAの 重陽子イオンビームが入射される。1系列の加速器 モジュールは、イオン源(出力エネルギー: 125mA-100KeV)、高周波四重極リニアック(RFQ) (出力エネルギー: 5.0MeV)、ドリフトチューブ リニアック(DTL)(出力エネルギー:40MeV)及び 高エネルギービーム輸送系(HEBT)で構成される [4]。

RFQでは、イオン源から入射された100keVの重陽 子ビームを175MHz のダイアクロード(単管最大出 力1M-CW)を3台用いて、5.0MeVに加速するシス テム設計を検討している。この設計ではRFQの最大 電場をキルパトリック(1.7~1.8)放電限界から算出 された23.8 ~ 25.2 MV/mとしRFQの全長が約12mと なる。RFQの軸長さが長くなった場合、軸方向の高 次モードが励起され動作モードに影響するため、長 さ数メートルのRFQモジュールを空洞結合板 (Coupling Plate)を介して連結していく必要がある。 これはLEDA-RFQ[4-8]で実績のある空洞結合板を応 用したものである。 IFMIF プロジェクトの要素技術確証フェーズ (KEP)では、RFQモジュールの基本技術手法の確 立を目標として3次元電磁界解析コードMAFIA に よる175MHzRFQの設計を行い、モックアップモ ジュールによる低電力試験により共振周波数及び励 起モードの評価を行った。またRFQの幾何学的な寸 法からRF入力結合系の検討を行い、ループアンテ ナを用いた多重入力結合系の設計を採用した。

2.IFMIF用RFQの設計

2.1 175MHzRFQの主要寸法

図1に3次元電磁界解析コード(MAFIA)で設計 を行った175MHzRFQの主要寸法を示す。設計は、 IFMIF用RFQシステムとして2つのCoupling Plateを採 用した系を考慮し、セントラルモジュール(軸長さ 4m)の両端にエンドプレート部を取付けたモデル を使用した。重陽子イオンビームが加速されるRFQ のボア径は8mmとし、またベーン先端部の半径を 4mmとした。また図2に低電力試験のためにアルミ ニウム材を使用して試作したセントラルモジュール の断面写真を示す。この断面写真の中には、低電力 試験の時に高周波を入力するループアンテナ(左 上)と高周波を受信するピックアップコイル(右 下)が配置されている。これらのループアンテナ及 びピックアップコイルは、各キャビティに配置取替 え可能な構造である。

図1 175MHz RFQの主要寸法

図2 セントラルモジュールの断面写真

2.2 共振周波数と高次モードの測定

図3にセントラルモジュール両端にエンドプレート部を取付けた外観写真を示す。エンドプレート部は、エンドプレートとベーン端部との軸方向の ギャップは40mmであり、ベーンのアンダーカット部 は軸長さ方向に50mmまた径方向に82mmカットした設 計になっている。

図3 低電力試験のために試作したモジュール

図3に示す系においてネットワークアナライザー による共振周波数と励起モードの測定を行った。図 4 にループアンテナから入射した時のピックアップ コイルへの伝送係数(S21)の測定データを示す。 セントラルモジュール軸長1.1mにおいて2つのピー クが計測された。それぞれのピークに対して、4つ のキャビティの位相を測定し、この位相差からモー ド判定を行った。その結果、共振周波数が低い方は、 運転モードのTE₂₁₀モードであり、2つ目のピークは ダイポールモードのTE₁₁₀モードであることが判明 した。測定による運転モードのTE200の共振周波数 は175.65MHzであり、解析結果より1.29MH z 高い共 振周波数であったが1%以下の誤差範囲で一致した。 この誤差は、エンドプレート部とセントラルモ ジュールのミスアライメントによるものと考えてい る。また共振周波数に対する測定結果と解析結果が 一致するためには、境界条件が大きく変化するエン ドプレート部におけるメッシュサイズが重要であり、 セントラルモジュール部の軸方向のメッシュサイズ (27.5mm/mesh)の約1/5以下にすることが必要で あることが明らかになった。

図 4 ネットワークアナライザーによるモック アップモジュールの共振周波数測定

2.3 軸長さに対する高次モード解析

図5にRFQ軸長さに対する高次モードの依存性に ついての解析結果を示す。RFQの軸長さが2.1m以上 4.1m以内において、運転モードと高次モードとの 共振周波数の差が1MHz以上離れており、この軸長 さにおいて運転モードが高次モードによる影響を受 けないことが判明した。IFMIF用RFQでは、RFQ軸 長さ12m程度が必要とされる。結合板2枚を採用し た場合、RFQ1モジュール長は4mとなり、高次 モードによる影響はなく、空洞結合板2枚を採用し たRFQシステム設計が有効であることがわかった。

図5 RFQ軸長さに対する高次モードの依存性

3.多重RF入力結合系の設計

3.1 RF入力結合系の概念設計

IFMIF用RFQシステムでは、ダイアクロード(単 管最大出力1M-CW)を3台用い、RFQ1モジュール 長当り700kWのRF入射が必要となる。各ダイアク ロードからの電力伝送に際して、伝送系を4分配し て250kW-CWの高周波真空窓4個を介して、1モ ジュールのRFQに伝送される。

RF入力結合系では、矩形導波管をリジッド型に してカットオフ周波数を低くして開口面から入射す るアイリスタイプと図6に示すように同軸導波管か らループアンテナ介して入射する2種類がある。 IFMIF用RFQシステムでは、周波数175MHzが用いら れるために矩形導波管の寸法は約1.0m x 0.5mと大 型化する。また前章で示したようにRFQ寸法から同 軸導波管を考慮した場合、3 1/8インチ以下のサイズ に制限される。

RF入射系の大型化を避けるために同軸導波管3 1/8インチサイズを採用し、ループアンテナによる RF入力結合系の設計を採用した。この同軸導波管 の耐電圧は、内部導体を十分冷却した場合で200k W程度である。従って1モジュール当り少なくとも 4つの入射ポートからRF入射する多重RF入力結合 系の開発が必要となる。

図6 同軸導波管ループアンテナ

3.2 ループアンテナ

同軸導波管の内部導体 33.4mmから 12mmまで 軸長さ50mmでテーパをかけ、ループアンテナのサ イズとして、冷却性能を得るために直径 12mm(肉 厚1mmのパイプ)を採用した。この場合内径の曲げ 半径が25mmとなり、ループアンテナの内径は 50、 外形は 74mmとなる大口径となる。

この構造による共振周波数の変化は大きいが、 ビーム無しの無負荷時の反射係数は、-15dB以上が 得られ、アンテナでの反射電力は7%程度だと推察 される。この結合度による高周波源(ダイアクロー ド)への反射電力は、ダイアクロードへの入力位相 を調整することにより出力位相を抑制し、高周波源 への反射電力を打ち消す計画である。またループア ンテナ構造によりアンテナ近傍で電界の歪みが発生 するが、ボア径内の電界分布は、主にベーン先端部 の形状で決まると推察している。

これらを解明するためにループアンテナによる共 振周波数の変化、各キャビティでのパワーバランス の計測を計画している。これらの結果については、 ポスターで詳細に説明する。

4.まとめ

3次元電磁界解析コード(MAFIA)による 175MHzRFQの設計に基づいたモックアップモ ジュールによる低電力試験で得られた共振周波数の 測定結果と解析結果は1%以内精度で一致した。ま たRFQ軸長さに対する高次モードの解析を行い、軸 長4.1mにおいて運転モードと高次モードとの共振 周波数の差が1MHz以上あることから運転モードが 高次モードによる影響受けないことが判明し、2つ の結合板を採用した設計が有効であることを示した。 また幾何学的なRFQ寸法から同軸導波管3 1/8インチ サイズの複数のループアンテナによるRF入力結合 系の採用が妥当であることを示し、その測定を開始 した。

5.謝辞

本研究のモックアップモジュールの製作に関して、 (株)西野精器製作所の永井義男様ならびに小室和 志様ほか、多くの関係者の皆様にご協力を頂きまし た。この場を借りましてお礼申しあげます。

参考文献

- [1] IFMIF-CDA Team (Ed.) M.Martone, "IFMIF, International Fusion materials Irradiation Facility Conceptual Design Activity, Final Report", ENEA Frascati Report, RT/ERG/FUS/96/17 (1996). http://www.frascati.enea.it/ifmif/
- [2] T.Kondo, J.of Nucl.Mater., 258-263,47(1998).
- [3] T.E.Shannon, et.al., J.of Nucl.Mater., 106, 47(1998).
- [4] IFMIF International Team, "IFMIF-KEP Report", JAERI,JAERI-Tech 2003-005, March 2003.
- [5] D.Schrage, et al., "CW RFQ Fabrication and Engineering", Proc. LINAC98 (Chicago,24-28 August 1998), pp679-683.
- [6] L. M. Young, et al., "High-Power Operation of LEDA", Proc. LINAC2000 (Monterey, 21-25 August 200), pp336-340.
- [7] L. M. Young, et al., "Operations of the LEDA Resonantly Coupled RFQ", Proc. PAC2001 (Chicago, 18-22 June 2001), pp309-313.
- [8] H. V. Smith, Jr. et al., "Low-Energy Demonstration Accelerator (LEDA) Test Results and Plans", Proc. PAC2001 (Chicago, 18-22 June 2001), pp3296-3