新博士紹介

題目

氏名	山田 雅子*	(理化学研究所)
論文提出大学	京都大学	

学位種類 博士(理学)

取得年月日 2013年3月25日

パルス白色中性子ビーム集光のた めの強度変調型永久六極磁石を用 いた ToF レンズ

ToF-lens for focusing pulsed white neutron beam using permanent magnet sextupole with modulation capability

1. はじめに

中性子源は従来主流であった核分裂原子炉が到 達可能な中性子ビーム強度の上限値に達したた め、加速器ベースの核破砕中性子源へと移行しつ つある. 米国(SNS, ORNL),日本(J-PARC, JAEA,KEK)で超大型の大強度中性子線施設が 稼動を開始し、加速器ベースの中性子源の開発及 び利用が世界的に活発化している.

我々は加速器科学で長年培われた荷電粒子ビー ムに対するビーム制御技術を中性子ビームに適用 し,発生した中性子の利用効率を向上させる中性 子レンズの開発を行なってきた¹¹.博士課程にお いては,飛行時間 (Time of Flight, ToF)情報を 用いて広い波長分散をもつパルスビームを色収差 なく集光できる新しいタイプのパルス白色中性子 ビーム集光レンズシステムを,強度変調型永久六 極磁石 (modulating-Permanent Magnet Sextupole, mod-PMSx) と命名し,開発と集光性能テスト実 験を行なった.

2. 強度変調型永久六極磁石 mod-PMSx

中性子は電気的には中性であるが,有限の磁気 モーメントをもつため磁場中でポテンシャルを感 じ,磁場の勾配に比例した力を受ける. 六極磁場 では磁場勾配が中心からの距離rの二乗に比例し て大きくなるため,中性子はビーム軸からの距離 に比例した力を受ける. これが中性子ビーム集光 力の源である^{2,3)}.

この原理を使った六極磁石レンズの集光距離は 中性子波長 λ の二乗に反比例した量で, 白色ビー ムに対しては色収差が生じる. しかしながら, パ ルスビームの場合 1 つのパルス内の全中性子はパ ルス発生時刻を共通の時間原点として持つため, ある時刻 t にレンズ磁石に到着する中性子の波長 は一意に決まる. 磁場強度を t⁻² に比例して変調 し, この ToF 法を利用してビームパルスに同期 することで集光力の波長依存性を相殺すれば, ワ イドバンドなパルスビーム全域にわたって集光距 離が一定となり, 色収差効果を抑えた集光が可能 となる.

mod-PMSx の六極磁石は永久磁石を extended-Halbach 型⁴⁾ に組み立てて非常に強力な六極磁 場強度 G_6 を発生させており、レンズシステム全 体の小型化に成功している.永久磁石を用いなが らも G_6 を変調して色収差効果を抑制するために、 回転二重リング構造を導入した.六極磁石を同軸 二重リングに分割し固定された内輪の周りに外輪 を回転させると、六極磁石軸上のビームボアに発 生する六極磁束密度が余弦関数的に変調される. ワイドバンドビーム集光に必要な t^{-2} 変調に対し て、変調 1 周期のうちおよそ $\pi/4 \le \theta \le \pi$ の範囲を 近似的に用いる.

磁束の集中する磁極のビームボアに近い部分の 磁石を飽和磁束密度の大きな軟磁性材料 (パーメ ンジュール) で置き換えることで,強度変調する 際の最大値が拡大されるだけでなく,最小値も大 幅に下がり,変調域を飛躍的に拡張することに成 功している.この結果,開発した磁気レンズはビー ムボア径 ϕ 15 mm で磁場変調域 0.95 $\leq G_6$ [10⁴ T/m²] \leq 5.6,変調幅 5.9 倍 ($G_{6 max}/G_{6 min} = 5.9$) を持ち,最長波長 λ_{max} が最短波長 λ_{min} の 2 倍 ($\lambda_{max}/\lambda_{min} = 2$)というこれまで達成されたこと のない広い波長域を集光する性能を有す.この磁 場強度をもつ磁石長 66 mm の六極磁石を 3 ユ ニット直列連結し,有効磁石長 198 mm とした

^{*} 理化学研究所 RIKEN (E-mail: yamadamasako@riken.jp)

磁気レンズシステムを構築した. 1 ユニットの断 面を図1に示す.

開発にあたり最大の機械的課題は、六極磁場 強度が強いために、内輪-外輪磁石リング間の ギャップに生じる周期的に変化する最大 39 Nm の外輪回転トルクであった。レンズシステムを小 型に抑えるため、レンズ六極磁石の同軸上に配置 された磁気トルクキャンセラー (magnetic Torque Canceller, mag-TC)を開発した. mag-TC はレンズ部分の六極磁石と同様に、同軸上二 重リング構造をもち、レンズ磁石と大きさが同じ で逆の極性を持つトルクを発生する. これがレン ズ磁石と打ち消し合い最大トルクの大きさを大幅 に抑制する. その結果ピークトルクは 12.5 Nm にまで軽減された. さらに適切な減速ギアを用い ることで 1.5 kW と比較的小型の汎用モーターで 運転が可能となり、30 Hz のパルスビームに対し て安定した運転が可能となった.

mod-PMSx 開発の詳細は文献5に記述している.

3. mod-PMSx の集光性能テスト実験

製作した mod-PMSx の集光性能を実証するため,フランスのグルノーブルにある Institut Laue-Langevin の 極 冷 中 性 子 ビ ー ム ラ イ ン, PF2-VCN⁶⁾ にて集光実験を行なった.

Fixed inner ring of PMSx Rotating outer ring of PMSx

図1 mod-PMSx1ユニットの断面図. レンズと mag-TC計4重同軸リング構造となっている.

3.1 実験セットアップ

まず、プライマリービームをディスクチョッ パーを用いて 30 Hz にパルス化した上, 磁気スー パーミラー⁷⁾により集光対象波長域27≤λ[Å] ≤55の波長を持ちかつアップスピンを持つ中性 子のみを選択した. ビームをスピン偏極するのは、 六極磁場は中性子のアップまたはダウンスピンに 対してそれぞれ、集光または発散させる作用があ るためである. 偏極ミラーの後段に $\phi 2 \text{ mm}$ のス リットを設置し、そこを光源とした. mod-PMSx の放射化を防ぐためレンズ入り口に ø14 mm の アパーチャーを設置し、ビームをコリメートした. このようにして偏極した上述の波長域を持つパル ス中性子ビームを mod-PMSx に入射し、集光作 用を受けたビームの結像位置における二次元空間 分布を、抵抗分割型二次元検出器 RPMT¹⁾を用 いて時分割測定した.

3.2 実験結果

集光作用を受ける直前の mod-PMSx 入り口に おけるビームの二次元空間分布と、集光作用を受 けて結像したビームの二次元空間分布をそれぞれ 図2に示す. 中性子発生ターゲットから我々が使 用しているビームポートに輸送されるまでの中性 子ガイド管の輸送可能最大発散角に波長依存性が あるため、短波長側でビームダイバージェンスが 小さい. レンズ入り口でもその影響がみられるが, 結像位置における集光ビームスポットサイズの半 値全幅(FWHM)は集光対象波長域にわたって ソースアパーチャサイズ (*φ*2 mm) におおよそ一 致し, 波長幅2倍以上のワイドバンドパルスビー ムの集光が実証された.この時,実験的に決定し た集光距離全長はわずか 1.84 m とコンパクトな ビームラインを実現している.結像位置における 単位時間・単位面積当たりの中性子数は集光作用 を受けない場合に比べて対象波長域で積分すると 63 倍となり、中性子利用効率を1 桁以上向上さ せることに成功した.

4. 今後の展望

mod-PMSx は冷中性子ビームへの応用も充分 可能で,利便性の高いシステムであるため,多く の核破砕中性子源や小型中性子源に設置されてい るビームラインにおいて標準的に利用され,実験 効率の向上に貢献することが期待できる.中性子

図2 mod-PMSx 入り口での入射ビームの二次元空間分布(左)と結像位置での集光ビームの二次元空間分 布(右). 1マスは20mm×20mmの実空間に相当し、左上から右下に向かって最短波長λ_{min}から最長 波長λ_{max}にわたる各波長に対応している.

装置への応用例として,集光実験と同時にこのレ ンズを拡大器として用いた高分解能中性子イメー ジングのデモンストレーションを行った.光源に 置かれたサンプルスリット像を上記波長域にわ たって5倍に拡大した像をイメージングプレート を用いて測定し,mod-PMSxが拡大レンズとし て機能することを確認した.また,同様に集光 パルスビームを用いた中性子小角散乱実験 (Small Angle Neutron Scattering, SANS)のデ モンストレーションを行った.集光ビームはス ピン偏極しているため,偏極解析も可能である. 同等の性能をもつ従来型に比べて装置サイズを全 長わずか2mと1/5にまで小型化することに成 功した.高分子機能材料や磁性材料に対して SANS測定を行ない,その測定性能が実証された.

5. 近況と抱負

博士号取得後,理化学研究所の特別研究員とし て採用され,幸運にも中性子装置開発に関する研 究を続けている.

理化学研究所では、2012 年度に小型陽子線ラ イナックを用いた小型中性子源システム RANS の開発に着手し、同12月に中性子ビーム発生に 成功、現在では中性子イメージング実験を行なっ ている. RANS は従来大型施設に限定されていた 中性子線利用の壁を破り,大学やメーカー等産業 界の研究者にも広く簡便に利用できる中性子線源 の普及を第一目的に掲げている. その中で私は小 型中性子源 RANS の運転から中性子イメージン グ測定までの技術を習得し,日々研鑽を積んでい る. そして高輝度,高品質の中性子ビーム実験装 置の設計及び開発を行なってゆく予定である. RANS の普及性を飛躍的に高めることだけでな く,従来の手法ではJ-PARC などの強力な中性子 線源でも不可能であった測定を実現し,新たな物 理の展開に貢献する研究ができればと思う.

参考文献

- 1) Y. Iwashita, et al., Nucl. Instr. and Meth. A 586 (2008) 73.
- 2) P. S. Farago, Nucl. Instr. and Meth. 30 (1964) 271.
- 3) H. M. Shimizu, et al., Nucl. Instr. and Meth. A 430(1999) 423.
- 4) M. Kumada, et al., IEEE Trans. Appl. Supercond. 12 (2002) 129.
- 5) M. Yamada, et al., Nucl. Instr. and Meth. A 634 (2011) s156.
- 6) http://www.ill.eu/instruments-support/instrumentsgroups/instruments/pf2/characteristics/
- 7) M. Hino, et al., Physica B 385-386 (2006) 1187.